HYU-NLP-Bert-MultiIntent
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0088
- F1: 0.9503
- Roc Auc: 0.9706
- Accuracy: 0.8817
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.071 | 1.0 | 1801 | 0.0704 | 0.0 | 0.5 | 0.0 |
0.0515 | 2.0 | 3602 | 0.0488 | 0.0654 | 0.5170 | 0.0152 |
0.0325 | 3.0 | 5403 | 0.0275 | 0.468 | 0.6546 | 0.0912 |
0.0159 | 4.0 | 7204 | 0.0161 | 0.8725 | 0.8969 | 0.6041 |
0.008 | 5.0 | 9005 | 0.0108 | 0.9368 | 0.9550 | 0.8235 |
0.0049 | 6.0 | 10806 | 0.0085 | 0.9412 | 0.9614 | 0.8493 |
0.0028 | 7.0 | 12607 | 0.0072 | 0.9450 | 0.9668 | 0.8612 |
0.0019 | 8.0 | 14408 | 0.0071 | 0.9440 | 0.9663 | 0.8638 |
0.0012 | 9.0 | 16209 | 0.0068 | 0.9479 | 0.9688 | 0.8711 |
0.001 | 10.0 | 18010 | 0.0072 | 0.9439 | 0.9655 | 0.8566 |
0.0006 | 11.0 | 19811 | 0.0073 | 0.948 | 0.9696 | 0.8718 |
0.0005 | 12.0 | 21612 | 0.0075 | 0.9459 | 0.9680 | 0.8678 |
0.0004 | 13.0 | 23413 | 0.0074 | 0.9462 | 0.9677 | 0.8698 |
0.0003 | 14.0 | 25214 | 0.0082 | 0.9456 | 0.9691 | 0.8724 |
0.0002 | 15.0 | 27015 | 0.0078 | 0.9461 | 0.9685 | 0.8652 |
0.0002 | 16.0 | 28816 | 0.0081 | 0.9473 | 0.9691 | 0.8764 |
0.0001 | 17.0 | 30617 | 0.0080 | 0.9484 | 0.9690 | 0.8751 |
0.0001 | 18.0 | 32418 | 0.0100 | 0.9392 | 0.9656 | 0.8559 |
0.0002 | 19.0 | 34219 | 0.0085 | 0.9453 | 0.9667 | 0.8638 |
0.0001 | 20.0 | 36020 | 0.0087 | 0.948 | 0.9696 | 0.8764 |
0.0001 | 21.0 | 37821 | 0.0086 | 0.9485 | 0.9701 | 0.8764 |
0.0001 | 22.0 | 39622 | 0.0088 | 0.9503 | 0.9706 | 0.8817 |
0.0001 | 23.0 | 41423 | 0.0093 | 0.9468 | 0.9686 | 0.8685 |
0.0001 | 24.0 | 43224 | 0.0098 | 0.9424 | 0.9650 | 0.8553 |
0.0001 | 25.0 | 45025 | 0.0100 | 0.9418 | 0.9676 | 0.8553 |
0.0001 | 26.0 | 46826 | 0.0098 | 0.9478 | 0.9690 | 0.8724 |
0.0001 | 27.0 | 48627 | 0.0094 | 0.9493 | 0.9718 | 0.8771 |
0.0001 | 28.0 | 50428 | 0.0091 | 0.9482 | 0.9704 | 0.8718 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for hongroklim/HYU-NLP-Bert-MultiIntent
Base model
google-bert/bert-base-uncased