Uploaded model

  • Developed by: hotaru14
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Google colaboratory


!pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install ipywidgets --upgrade from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json import os from google.colab import userdata os.environ["HF_TOKEN"] = userdata.get("HF_TOKEN") HF_TOKEN = os.environ["HF_TOKEN"]

My model and tokenizer

model_name = "hotaru14/llm-jp-3-13b-finetune-2-LoRA" tokenizer_name = "hotaru14/llm-jp-3-13b-finetune-2-tokenizer"

QLoRA config

bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, )

Load model

model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN )

Load tokenizer

tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True, token = HF_TOKEN)

データセットの読み込み。

datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

results = [] for data in tqdm(datasets):

input = data["input"]

prompt = f"""### 指示 {input}

回答:

"""

tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2 )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

results.append({"task_id": data["task_id"], "input": input, "output": output})

import re model_name = re.sub(".*/", "", model_name) with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n')

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hotaru14/llm-jp-3-13b-finetune-2-LoRA

Finetuned
(1140)
this model