|
--- |
|
license: mit |
|
base_model: pyannote/segmentation-3.0 |
|
tags: |
|
- speaker-diarization |
|
- speaker-segmentation |
|
- generated_from_trainer |
|
datasets: |
|
- ArtFair/diarizers_dataset_70-15-15 |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3941 |
|
- Der: 0.2887 |
|
- False Alarm: 0.1590 |
|
- Missed Detection: 0.1025 |
|
- Confusion: 0.0272 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| |
|
| 0.4009 | 1.0 | 747 | 0.4264 | 0.3191 | 0.1921 | 0.0979 | 0.0291 | |
|
| 0.3626 | 2.0 | 1494 | 0.4017 | 0.3027 | 0.1664 | 0.1085 | 0.0278 | |
|
| 0.3527 | 3.0 | 2241 | 0.4077 | 0.2972 | 0.1354 | 0.1347 | 0.0271 | |
|
| 0.3303 | 4.0 | 2988 | 0.3933 | 0.2867 | 0.1506 | 0.1083 | 0.0277 | |
|
| 0.3312 | 5.0 | 3735 | 0.3941 | 0.2887 | 0.1590 | 0.1025 | 0.0272 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|