RLAIF-V-Dataset

This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the RLAIF-V-Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4467
  • Rewards/chosen: -3.1988
  • Rewards/rejected: -5.9606
  • Rewards/accuracies: 0.8163
  • Rewards/margins: 2.7618
  • Logps/rejected: -218.4866
  • Logps/chosen: -190.4653
  • Logits/rejected: -2.3732
  • Logits/chosen: -2.4055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5777 0.1709 50 0.5813 -0.4541 -1.0668 0.6683 0.6127 -169.5483 -163.0182 -2.5153 -2.5221
0.4982 0.3419 100 0.5161 -0.9806 -2.1974 0.7212 1.2168 -180.8539 -168.2832 -2.4606 -2.4847
0.4954 0.5128 150 0.4770 -1.5352 -3.2803 0.7548 1.7451 -191.6833 -173.8291 -2.0991 -2.1473
0.4567 0.6838 200 0.4598 -1.1951 -2.8406 0.7596 1.6455 -187.2865 -170.4288 -2.1090 -2.1587
0.4873 0.8547 250 0.4487 -1.9205 -3.6640 0.7635 1.7435 -195.5203 -177.6819 -2.5457 -2.5724
0.2176 1.0256 300 0.4383 -1.1991 -3.1202 0.7846 1.9211 -190.0823 -170.4688 -2.3130 -2.3490
0.2095 1.1966 350 0.4537 -2.3545 -4.8732 0.7933 2.5188 -207.6123 -182.0219 -2.3656 -2.3942
0.1952 1.3675 400 0.4353 -1.9722 -4.1870 0.7962 2.2148 -200.7505 -178.1995 -2.3058 -2.3361
0.1819 1.5385 450 0.4321 -2.0466 -4.4416 0.8077 2.3950 -203.2960 -178.9431 -2.2282 -2.2612
0.1932 1.7094 500 0.4247 -1.8597 -4.1324 0.8087 2.2727 -200.2041 -177.0739 -2.2659 -2.2970
0.1921 1.8803 550 0.4131 -2.3219 -4.8505 0.8183 2.5286 -207.3855 -181.6965 -2.3691 -2.3985
0.0868 2.0513 600 0.4392 -2.7792 -5.2414 0.8135 2.4623 -211.2946 -186.2690 -2.4330 -2.4615
0.0825 2.2222 650 0.4447 -3.2209 -6.0852 0.8154 2.8642 -219.7319 -190.6867 -2.3962 -2.4295
0.0925 2.3932 700 0.4449 -3.2092 -6.0685 0.8183 2.8593 -219.5651 -190.5695 -2.3854 -2.4189
0.0754 2.5641 750 0.4567 -3.3570 -6.0710 0.8115 2.7141 -219.5908 -192.0472 -2.3789 -2.4105
0.0707 2.7350 800 0.4484 -3.2447 -6.0070 0.8135 2.7622 -218.9498 -190.9248 -2.3739 -2.4066
0.0739 2.9060 850 0.4468 -3.2032 -5.9670 0.8173 2.7638 -218.5504 -190.5096 -2.3732 -2.4054

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.3
Downloads last month
7
Safetensors
Model size
7.57B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for htlou/mm-interp-RLAIF-V-Dataset

Finetuned
(64)
this model