|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: vinai/phobert-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: phobert_classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# phobert_classification |
|
|
|
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3677 |
|
- F1: 0.9408 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| No log | 1.0 | 388 | 0.2170 | 0.9252 | |
|
| 0.3098 | 2.0 | 776 | 0.2119 | 0.9369 | |
|
| 0.1763 | 3.0 | 1164 | 0.2023 | 0.9330 | |
|
| 0.1286 | 4.0 | 1552 | 0.2606 | 0.9344 | |
|
| 0.1286 | 5.0 | 1940 | 0.2378 | 0.9391 | |
|
| 0.0943 | 6.0 | 2328 | 0.2651 | 0.9336 | |
|
| 0.0706 | 7.0 | 2716 | 0.2986 | 0.9366 | |
|
| 0.0626 | 8.0 | 3104 | 0.3168 | 0.9305 | |
|
| 0.0626 | 9.0 | 3492 | 0.3020 | 0.9358 | |
|
| 0.0515 | 10.0 | 3880 | 0.3062 | 0.9366 | |
|
| 0.0397 | 11.0 | 4268 | 0.3487 | 0.9344 | |
|
| 0.0337 | 12.0 | 4656 | 0.4043 | 0.9291 | |
|
| 0.031 | 13.0 | 5044 | 0.3779 | 0.9366 | |
|
| 0.031 | 14.0 | 5432 | 0.3934 | 0.9294 | |
|
| 0.0266 | 15.0 | 5820 | 0.3677 | 0.9408 | |
|
| 0.0246 | 16.0 | 6208 | 0.3874 | 0.9355 | |
|
| 0.0222 | 17.0 | 6596 | 0.4257 | 0.9344 | |
|
| 0.0222 | 18.0 | 6984 | 0.4372 | 0.9369 | |
|
| 0.022 | 19.0 | 7372 | 0.4408 | 0.9363 | |
|
| 0.0176 | 20.0 | 7760 | 0.4601 | 0.9358 | |
|
| 0.0142 | 21.0 | 8148 | 0.4503 | 0.9361 | |
|
| 0.0134 | 22.0 | 8536 | 0.4835 | 0.9366 | |
|
| 0.0134 | 23.0 | 8924 | 0.4594 | 0.9391 | |
|
| 0.0126 | 24.0 | 9312 | 0.4809 | 0.9366 | |
|
| 0.0109 | 25.0 | 9700 | 0.4859 | 0.9369 | |
|
| 0.012 | 26.0 | 10088 | 0.4824 | 0.9386 | |
|
| 0.012 | 27.0 | 10476 | 0.5067 | 0.9361 | |
|
| 0.0101 | 28.0 | 10864 | 0.4870 | 0.9375 | |
|
| 0.0102 | 29.0 | 11252 | 0.5302 | 0.9355 | |
|
| 0.0088 | 30.0 | 11640 | 0.4953 | 0.9366 | |
|
| 0.0093 | 31.0 | 12028 | 0.4914 | 0.9361 | |
|
| 0.0093 | 32.0 | 12416 | 0.5014 | 0.9389 | |
|
| 0.0084 | 33.0 | 12804 | 0.5026 | 0.9383 | |
|
| 0.0078 | 34.0 | 13192 | 0.5043 | 0.9380 | |
|
| 0.0075 | 35.0 | 13580 | 0.5035 | 0.9377 | |
|
| 0.0075 | 36.0 | 13968 | 0.5007 | 0.9377 | |
|
| 0.0077 | 37.0 | 14356 | 0.5102 | 0.9377 | |
|
| 0.0076 | 38.0 | 14744 | 0.5069 | 0.9391 | |
|
| 0.0059 | 39.0 | 15132 | 0.5105 | 0.9386 | |
|
| 0.0071 | 40.0 | 15520 | 0.5111 | 0.9383 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |
|
|