roberta_large_hostel_ner

This model is a fine-tuned version of FacebookAI/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0480
  • Precision: 0.6916
  • Recall: 0.7347
  • F1: 0.7125
  • Accuracy: 0.8223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 307 0.6049 0.5460 0.6836 0.6071 0.8031
0.7077 2.0 614 0.5622 0.5902 0.7044 0.6423 0.8194
0.7077 3.0 921 0.6149 0.6159 0.7155 0.6620 0.8174
0.3967 4.0 1228 0.6661 0.5917 0.7185 0.6490 0.8112
0.2371 5.0 1535 0.7497 0.6154 0.7145 0.6612 0.8126
0.2371 6.0 1842 0.8418 0.6138 0.7293 0.6666 0.8059
0.1496 7.0 2149 0.8446 0.6258 0.7231 0.6710 0.8190
0.1496 8.0 2456 0.9823 0.6399 0.7229 0.6789 0.8150
0.1073 9.0 2763 0.9789 0.6372 0.7235 0.6776 0.8163
0.0792 10.0 3070 1.0675 0.6607 0.7254 0.6915 0.8219
0.0792 11.0 3377 1.1495 0.6471 0.7306 0.6863 0.8129
0.0584 12.0 3684 1.1720 0.6313 0.7254 0.6751 0.8122
0.0584 13.0 3991 1.2905 0.6484 0.7246 0.6844 0.8080
0.0476 14.0 4298 1.3109 0.6515 0.7258 0.6867 0.8143
0.0321 15.0 4605 1.3268 0.6500 0.7256 0.6857 0.8123
0.0321 16.0 4912 1.4593 0.6482 0.7218 0.6830 0.8089
0.027 17.0 5219 1.4810 0.6559 0.7268 0.6895 0.8117
0.0242 18.0 5526 1.4636 0.6321 0.7193 0.6729 0.8098
0.0242 19.0 5833 1.5093 0.6640 0.7301 0.6955 0.8187
0.0188 20.0 6140 1.4944 0.6690 0.7240 0.6954 0.8178
0.0188 21.0 6447 1.5568 0.6550 0.7232 0.6874 0.8155
0.0164 22.0 6754 1.6352 0.6786 0.7215 0.6994 0.8176
0.0118 23.0 7061 1.6460 0.6674 0.7327 0.6985 0.8188
0.0118 24.0 7368 1.6089 0.6781 0.7300 0.7031 0.8223
0.0112 25.0 7675 1.7131 0.6635 0.7340 0.6970 0.8162
0.0112 26.0 7982 1.7572 0.6759 0.7313 0.7025 0.8185
0.0083 27.0 8289 1.7329 0.6726 0.7228 0.6968 0.8197
0.006 28.0 8596 1.8310 0.6684 0.7337 0.6995 0.8172
0.006 29.0 8903 1.8690 0.6692 0.7368 0.7014 0.8162
0.0059 30.0 9210 1.9132 0.6785 0.7283 0.7025 0.8173
0.0049 31.0 9517 1.8567 0.6856 0.7294 0.7068 0.8223
0.0049 32.0 9824 1.9176 0.6773 0.7320 0.7036 0.8217
0.0044 33.0 10131 1.9170 0.6843 0.7340 0.7083 0.8214
0.0044 34.0 10438 1.9416 0.6810 0.7371 0.7080 0.8196
0.004 35.0 10745 1.8975 0.6654 0.7332 0.6977 0.8215
0.0038 36.0 11052 1.9453 0.6877 0.7373 0.7116 0.8177
0.0038 37.0 11359 1.9305 0.6787 0.7342 0.7054 0.8179
0.002 38.0 11666 1.9255 0.6745 0.7313 0.7017 0.8202
0.002 39.0 11973 1.9737 0.6816 0.7329 0.7063 0.8196
0.0016 40.0 12280 1.9903 0.6838 0.7339 0.7080 0.8190
0.0018 41.0 12587 1.9903 0.6882 0.7365 0.7115 0.8224
0.0018 42.0 12894 1.9753 0.6802 0.7364 0.7072 0.8228
0.001 43.0 13201 2.0004 0.6904 0.7345 0.7118 0.8222
0.0007 44.0 13508 2.0058 0.6825 0.7357 0.7081 0.8225
0.0007 45.0 13815 2.0355 0.6874 0.7357 0.7107 0.8228
0.0006 46.0 14122 2.0481 0.6912 0.7346 0.7122 0.8226
0.0006 47.0 14429 2.0460 0.6900 0.7338 0.7112 0.8220
0.0004 48.0 14736 2.0553 0.6911 0.7364 0.7130 0.8224
0.0003 49.0 15043 2.0499 0.6918 0.7346 0.7125 0.8224
0.0003 50.0 15350 2.0480 0.6916 0.7347 0.7125 0.8223

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
144
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hts98/roberta_large_hostel_ner

Finetuned
(290)
this model