metadata
datasets:
- DFKI-SLT/few-nerd
language:
- en
metrics:
- f1=0.87
- precision
- recall
HuggingsaurusRex/bert-base-uncased-for-mountain-ner
Purpose
Detect mountain names in text using token classification.
Usage
from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
# Load model and tokenizer
model = AutoModelForTokenClassification.from_pretrained('huggingsaurusRex/bert-base-uncased-for-mountain-ner')
tokenizer = AutoTokenizer.from_pretrained('huggingsaurusRex/bert-base-uncased-for-mountain-ner')
# Create NER pipeline
ner = pipeline('ner', model=model, tokenizer=tokenizer)
# Perform inference
res = ner("I spent days climbing the Mount Everest.")
print(res)
Architecture
The model is a BERT-based token classification model fine-tuned on the Few-NERD dataset.
Results
- F1-Score: 0.87
- Precision: 0.84
- Recall: 0.91