hugohrban commited on
Commit
0af00d2
·
verified ·
1 Parent(s): e1ca8ca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -11,17 +11,18 @@ Example usage:
11
 
12
  ```python
13
  from transformers import AutoModelForCausalLM
14
- from transformers import AutoTokenizer
15
  import torch
16
  import torch.nn.functional as F
17
 
18
  # load model and tokenizer
19
- model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small", trust_remote_code=True)
20
- tokenizer = AutoTokenizer.from_pretrained("hugohrban/progen2-small", trust_remote_code=True)
 
21
 
22
  # prepare input
23
  prompt = "1MEVVIVTGMSGAGK"
24
- input_ids = torch.tensor(tokenizer.encode(prompt)).to(model.device)
25
 
26
  # forward pass
27
  logits = model(input_ids).logits
@@ -29,6 +30,6 @@ logits = model(input_ids).logits
29
  # print output probabilities
30
  next_token_logits = logits[-1, :]
31
  next_token_probs = F.softmax(next_token_logits, dim=-1)
32
- for i, prob in enumerate(next_token_probs):
33
- print(f"{tokenizer.decode(i)}: {100 * prob:.2f}%")
34
  ```
 
11
 
12
  ```python
13
  from transformers import AutoModelForCausalLM
14
+ from tokenizers import Tokenizer
15
  import torch
16
  import torch.nn.functional as F
17
 
18
  # load model and tokenizer
19
+ model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small-mix7", trust_remote_code=True)
20
+ tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-small-mix7")
21
+ tokenizer.no_padding()
22
 
23
  # prepare input
24
  prompt = "1MEVVIVTGMSGAGK"
25
+ input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device)
26
 
27
  # forward pass
28
  logits = model(input_ids).logits
 
30
  # print output probabilities
31
  next_token_logits = logits[-1, :]
32
  next_token_probs = F.softmax(next_token_logits, dim=-1)
33
+ for i in range(tokenizer.get_vocab_size(with_added_tokens=False)):
34
+ print(f"{tokenizer.id_to_token(i)}: {round(100 * next_token_probs[i].item(), 2):.2f} %")
35
  ```