Mirror of the base ProGen2-xlarge model (with slightly modified configuration and forward pass) introduced by Nijkamp, et al..

See also my github repo for an example of finetuning this model.

Example usage:

from transformers import AutoModelForCausalLM
from tokenizers import Tokenizer
import torch
import torch.nn.functional as F

# load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-xlarge", trust_remote_code=True)
tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-xlarge")
tokenizer.no_padding()

# prepare input
prompt = "1MEVVIVTGMSGAGK"
input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device)

# forward pass
logits = model(input_ids).logits

# print output probabilities
next_token_logits = logits[-1, :]
next_token_probs = F.softmax(next_token_logits, dim=-1)
for i in range(tokenizer.get_vocab_size(with_added_tokens=False)):
    print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %")
Downloads last month
97
Safetensors
Model size
6.44B params
Tensor type
FP16
ยท
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Space using hugohrban/progen2-xlarge 1