smol-135-tq-augment
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-135M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1821
- < Precision: 0.9430
- < Recall: 0.9490
- < F1-score: 0.9460
- < Support: 4551.0
Precision: 0.9461
Recall: 0.9455
F1-score: 0.9458
Support: 4551.0
- = Precision: 0.8177
- = Recall: 0.7940
- = F1-score: 0.8056
- = Support: 898.0
- Precision: 0.0
- Recall: 0.0
- F1-score: 0.0
- Support: 0.0
- Accuracy: 0.9335
- Macro Avg Precision: 0.6767
- Macro Avg Recall: 0.6721
- Macro Avg F1-score: 0.6744
- Macro Avg Support: 10000.0
- Weighted Avg Precision: 0.9332
- Weighted Avg Recall: 0.9335
- Weighted Avg F1-score: 0.9333
- Weighted Avg Support: 10000.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: reduce_lr_on_plateau
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | < Precision | < Recall | < F1-score | < Support | > Precision | > Recall | > F1-score | > Support | = Precision | = Recall | = F1-score | = Support | - Precision | - Recall | - F1-score | - Support | Accuracy | Macro Avg Precision | Macro Avg Recall | Macro Avg F1-score | Macro Avg Support | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1-score | Weighted Avg Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6963 | 1.0 | 150 | 0.3731 | 0.6497 | 0.6799 | 0.6644 | 4551.0 | 0.6723 | 0.6504 | 0.6612 | 4551.0 | 0.5126 | 0.4766 | 0.4939 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6482 | 0.4586 | 0.4517 | 0.4549 | 10000.0 | 0.6477 | 0.6482 | 0.6476 | 10000.0 |
0.5542 | 2.0 | 300 | 0.3164 | 0.7453 | 0.7020 | 0.7230 | 4551.0 | 0.7084 | 0.7739 | 0.7397 | 4551.0 | 0.7314 | 0.6036 | 0.6614 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7259 | 0.5463 | 0.5199 | 0.5310 | 10000.0 | 0.7272 | 0.7259 | 0.7251 | 10000.0 |
0.4143 | 3.0 | 450 | 0.2629 | 0.8327 | 0.8062 | 0.8192 | 4551.0 | 0.8062 | 0.8446 | 0.8250 | 4551.0 | 0.7409 | 0.6815 | 0.7100 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8125 | 0.5950 | 0.5831 | 0.5886 | 10000.0 | 0.8124 | 0.8125 | 0.8120 | 10000.0 |
0.2789 | 4.0 | 600 | 0.2197 | 0.8577 | 0.8943 | 0.8756 | 4551.0 | 0.8718 | 0.8772 | 0.8745 | 4551.0 | 0.8609 | 0.6481 | 0.7395 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8644 | 0.6476 | 0.6049 | 0.6224 | 10000.0 | 0.8644 | 0.8644 | 0.8629 | 10000.0 |
0.2502 | 5.0 | 750 | 0.2087 | 0.9133 | 0.8890 | 0.9010 | 4551.0 | 0.8798 | 0.9229 | 0.9008 | 4551.0 | 0.8279 | 0.7339 | 0.7780 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8905 | 0.6552 | 0.6364 | 0.6450 | 10000.0 | 0.8904 | 0.8905 | 0.8899 | 10000.0 |
0.2069 | 6.0 | 900 | 0.1898 | 0.9226 | 0.9011 | 0.9117 | 4551.0 | 0.8972 | 0.9303 | 0.9135 | 4551.0 | 0.8266 | 0.7695 | 0.7970 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9026 | 0.6616 | 0.6502 | 0.6556 | 10000.0 | 0.9024 | 0.9026 | 0.9022 | 10000.0 |
0.2056 | 7.0 | 1050 | 0.1876 | 0.9204 | 0.9174 | 0.9189 | 4551.0 | 0.9118 | 0.9308 | 0.9212 | 4551.0 | 0.8301 | 0.7561 | 0.7914 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.909 | 0.6656 | 0.6511 | 0.6579 | 10000.0 | 0.9084 | 0.909 | 0.9085 | 10000.0 |
0.1686 | 8.0 | 1200 | 0.1837 | 0.9239 | 0.9336 | 0.9287 | 4551.0 | 0.9298 | 0.9286 | 0.9292 | 4551.0 | 0.8178 | 0.7795 | 0.7982 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9175 | 0.6679 | 0.6604 | 0.6640 | 10000.0 | 0.9171 | 0.9175 | 0.9172 | 10000.0 |
0.158 | 9.0 | 1350 | 0.1822 | 0.9178 | 0.9402 | 0.9289 | 4551.0 | 0.9448 | 0.9178 | 0.9311 | 4551.0 | 0.7797 | 0.7962 | 0.7879 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9171 | 0.6606 | 0.6636 | 0.6620 | 10000.0 | 0.9177 | 0.9171 | 0.9172 | 10000.0 |
0.1849 | 10.0 | 1500 | 0.1930 | 0.9227 | 0.9308 | 0.9267 | 4551.0 | 0.9255 | 0.9260 | 0.9257 | 4551.0 | 0.8026 | 0.7650 | 0.7834 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9137 | 0.6627 | 0.6554 | 0.6590 | 10000.0 | 0.9132 | 0.9137 | 0.9134 | 10000.0 |
0.1407 | 11.0 | 1650 | 0.1726 | 0.9408 | 0.9459 | 0.9434 | 4551.0 | 0.9459 | 0.9383 | 0.9421 | 4551.0 | 0.8022 | 0.8129 | 0.8075 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9305 | 0.6722 | 0.6743 | 0.6732 | 10000.0 | 0.9307 | 0.9305 | 0.9306 | 10000.0 |
0.1387 | 12.0 | 1800 | 0.1801 | 0.9404 | 0.9426 | 0.9415 | 4551.0 | 0.9414 | 0.9422 | 0.9418 | 4551.0 | 0.8075 | 0.7940 | 0.8007 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.6723 | 0.6697 | 0.6710 | 10000.0 | 0.9289 | 0.9291 | 0.9290 | 10000.0 |
0.1359 | 13.0 | 1950 | 0.1780 | 0.9428 | 0.9411 | 0.9419 | 4551.0 | 0.9385 | 0.9455 | 0.9420 | 4551.0 | 0.8268 | 0.8029 | 0.8147 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9307 | 0.6770 | 0.6724 | 0.6747 | 10000.0 | 0.9304 | 0.9307 | 0.9305 | 10000.0 |
0.1284 | 14.0 | 2100 | 0.1785 | 0.9445 | 0.9466 | 0.9456 | 4551.0 | 0.9452 | 0.9433 | 0.9442 | 4551.0 | 0.8004 | 0.7996 | 0.8 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9319 | 0.6725 | 0.6724 | 0.6725 | 10000.0 | 0.9319 | 0.9319 | 0.9319 | 10000.0 |
0.1339 | 15.0 | 2250 | 0.1810 | 0.9474 | 0.9413 | 0.9443 | 4551.0 | 0.9406 | 0.9492 | 0.9449 | 4551.0 | 0.8124 | 0.8007 | 0.8065 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9323 | 0.6751 | 0.6728 | 0.6739 | 10000.0 | 0.9322 | 0.9323 | 0.9322 | 10000.0 |
0.1294 | 16.0 | 2400 | 0.1821 | 0.9430 | 0.9490 | 0.9460 | 4551.0 | 0.9461 | 0.9455 | 0.9458 | 4551.0 | 0.8177 | 0.7940 | 0.8056 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9335 | 0.6767 | 0.6721 | 0.6744 | 10000.0 | 0.9332 | 0.9335 | 0.9333 | 10000.0 |
0.1383 | 17.0 | 2550 | 0.1828 | 0.9453 | 0.9464 | 0.9459 | 4551.0 | 0.9443 | 0.9470 | 0.9457 | 4551.0 | 0.8125 | 0.7962 | 0.8043 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9332 | 0.6755 | 0.6724 | 0.6740 | 10000.0 | 0.9330 | 0.9332 | 0.9331 | 10000.0 |
0.126 | 18.0 | 2700 | 0.1856 | 0.9418 | 0.9466 | 0.9442 | 4551.0 | 0.9426 | 0.9426 | 0.9426 | 4551.0 | 0.8149 | 0.7940 | 0.8043 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9311 | 0.6748 | 0.6708 | 0.6728 | 10000.0 | 0.9308 | 0.9311 | 0.9309 | 10000.0 |
0.136 | 19.0 | 2850 | 0.1851 | 0.9459 | 0.9442 | 0.9450 | 4551.0 | 0.9415 | 0.9486 | 0.9451 | 4551.0 | 0.8200 | 0.7962 | 0.8079 | 898.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9329 | 0.6768 | 0.6722 | 0.6745 | 10000.0 | 0.9326 | 0.9329 | 0.9327 | 10000.0 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for hugosousa/smol-135-tq-augment
Base model
HuggingFaceTB/SmolLM2-135M