bert-covidqa-3

This model is a fine-tuned version of deepset/bert-base-uncased-squad2 on the covid_qa_deepset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.6653 0.04 5 0.4879
0.2392 0.09 10 0.4815
0.4918 0.13 15 0.4405
0.3634 0.18 20 0.4156
0.6494 0.22 25 0.3953
0.2573 0.26 30 0.3845
0.3645 0.31 35 0.3737
0.5168 0.35 40 0.3656
0.5341 0.39 45 0.3680
0.4362 0.44 50 0.3774
0.5495 0.48 55 0.3692
0.5316 0.53 60 0.3496
0.4068 0.57 65 0.3414
0.4793 0.61 70 0.3470
0.7173 0.66 75 0.3517
0.5335 0.7 80 0.3646
0.7152 0.75 85 0.3848
0.7003 0.79 90 0.3962
0.2466 0.83 95 0.3971
0.415 0.88 100 0.3879
0.4797 0.92 105 0.3767
0.7039 0.96 110 0.3717

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for hung200504/bert-covidqa-3

Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train hung200504/bert-covidqa-3