roberta-finetuned-ner-vi

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0009
  • Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39}
  • Loc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124}
  • Org: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59}
  • Per: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70}
  • Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79}
  • Product: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Date Loc Org Per Price Product Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 100 0.0346 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 0.957983193277311, 'recall': 0.9193548387096774, 'f1': 0.9382716049382716, 'number': 124} {'precision': 0.9622641509433962, 'recall': 0.864406779661017, 'f1': 0.9107142857142857, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 0.7647058823529411, 'recall': 1.0, 'f1': 0.8666666666666666, 'number': 13} 0.9708 0.9531 0.9619 0.9919
No log 2.0 200 0.0060 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 0.968, 'recall': 0.9758064516129032, 'f1': 0.9718875502008033, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 0.9896 0.9922 0.9909 0.9979
No log 3.0 300 0.0013 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0
No log 4.0 400 0.0010 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0
0.0878 5.0 500 0.0009 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 124} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huy1211/roberta-finetuned-ner-vi

Finetuned
(626)
this model