xlm-roberta-large / README.md
huy1211's picture
Model save
6e4f600 verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
model-index:
  - name: xlm-roberta-large
    results: []

xlm-roberta-large

This model is a fine-tuned version of xlm-roberta-large on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Date Loc Org Per Price Product Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 100 0.0445 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} {'precision': 0.8984375, 'recall': 0.9274193548387096, 'f1': 0.9126984126984127, 'number': 124} {'precision': 0.8448275862068966, 'recall': 0.8305084745762712, 'f1': 0.8376068376068375, 'number': 59} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} 0.9406 0.9479 0.9442 0.9859

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0