roberta-finetuned-ner-en
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Ategory B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325}
- Ategory I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325}
- Erson B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847}
- Erson I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847}
- Oc B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648}
- Oc I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648}
- Roduct B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361}
- Roduct I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361}
- Vent B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456}
- Vent I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Ategory B | Ategory I | Erson B | Erson I | Oc B | Oc I | Roduct B | Roduct I | Vent B | Vent I | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0343 | 1.0 | 1000 | 0.0036 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 0.9969604863221885, 'recall': 0.9951456310679612, 'f1': 0.9960522320072881, 'number': 1648} | {'precision': 0.9951426836672739, 'recall': 0.9945388349514563, 'f1': 0.9948406676783005, 'number': 1648} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 0.9978021978021978, 'recall': 0.9956140350877193, 'f1': 0.9967069154774972, 'number': 456} | {'precision': 1.0, 'recall': 0.9984496124031008, 'f1': 0.9992242048099302, 'number': 645} | 0.9981 | 0.9973 | 0.9977 | 0.9992 |
0.0031 | 2.0 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0004 | 3.0 | 3000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645} | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for huynhat/roberta-finetuned-ner-en
Base model
FacebookAI/xlm-roberta-large