roberta-finetuned-ner-en

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Ategory B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325}
  • Ategory I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325}
  • Erson B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847}
  • Erson I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847}
  • Oc B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648}
  • Oc I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648}
  • Roduct B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361}
  • Roduct I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361}
  • Vent B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456}
  • Vent I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Ategory B Ategory I Erson B Erson I Oc B Oc I Roduct B Roduct I Vent B Vent I Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0343 1.0 1000 0.0036 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 0.9969604863221885, 'recall': 0.9951456310679612, 'f1': 0.9960522320072881, 'number': 1648} {'precision': 0.9951426836672739, 'recall': 0.9945388349514563, 'f1': 0.9948406676783005, 'number': 1648} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 0.9978021978021978, 'recall': 0.9956140350877193, 'f1': 0.9967069154774972, 'number': 456} {'precision': 1.0, 'recall': 0.9984496124031008, 'f1': 0.9992242048099302, 'number': 645} 0.9981 0.9973 0.9977 0.9992
0.0031 2.0 2000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645} 1.0 1.0 1.0 1.0
0.0004 3.0 3000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 325} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 847} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1648} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 361} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 456} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 645} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for huynhat/roberta-finetuned-ner-en

Finetuned
(383)
this model