gg_mdl

This model is a fine-tuned version of openai/whisper-base on the gg_ds dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0181
  • Cer: 26.4902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 300000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.0028 0.8 1000 1.5737 27.8905
0.0059 1.6 2000 1.5694 27.5053
0.0039 2.4 3000 1.5481 27.8554
0.0042 3.2 4000 1.5456 27.6774
0.0029 4.0 5000 1.5568 26.8684
0.0072 4.8 6000 1.5703 27.7266
0.0026 5.6 7000 1.5721 30.2872
0.002 6.4 8000 1.5597 27.0569
0.0077 7.2 9000 1.5680 27.3742
0.0059 8.0 10000 1.5891 28.6492
0.0023 8.8 11000 1.5614 26.9854
0.0043 9.6 12000 1.5679 26.9480
0.0027 10.4 13000 1.5807 26.9257
0.0024 11.2 14000 1.5903 26.1460
0.0028 12.0 15000 1.5812 30.4265
0.0043 12.8 16000 1.5962 28.9115
0.0019 13.6 17000 1.5915 28.0895
0.0066 14.4 18000 1.6038 27.1283
0.0052 15.2 19000 1.6088 27.0370
0.0015 16.0 20000 1.6055 26.7782
0.0076 16.8 21000 1.6063 26.5745
0.0074 17.6 22000 1.5864 26.1214
0.0009 18.4 23000 1.6042 28.1539
0.0025 19.2 24000 1.6047 27.0206
0.0041 20.0 25000 1.6130 26.9737
0.0031 20.8 26000 1.6087 28.4068
0.0014 21.6 27000 1.5997 27.6739
0.0003 22.4 28000 1.6045 26.3309
0.006 23.2 29000 1.6061 27.3074
0.0031 24.0 30000 1.6221 29.8739
0.0015 24.8 31000 1.6350 27.4784
0.0028 25.6 32000 1.6271 26.8274
0.0015 26.4 33000 1.6386 28.1504
0.0007 27.2 34000 1.6262 26.5054
0.0035 28.0 35000 1.6441 30.8761
0.0029 28.8 36000 1.6650 27.3988
0.0014 29.6 37000 1.6366 27.2957
0.0051 30.4 38000 1.6433 26.0230
0.0007 31.2 39000 1.6476 27.1224
0.0042 32.0 40000 1.6526 27.3367
0.001 32.8 41000 1.6606 26.5113
0.0005 33.6 42000 1.6455 28.5239
0.0064 34.4 43000 1.6537 28.2324
0.0005 35.2 44000 1.6589 26.0980
0.0035 36.0 45000 1.6617 26.6412
0.0014 36.8 46000 1.6698 27.2606
0.0007 37.6 47000 1.6751 26.9726
0.0036 38.4 48000 1.6790 26.9620
0.0049 39.2 49000 1.6914 26.9222
0.002 40.0 50000 1.7004 27.1728
0.0032 40.8 51000 1.7019 26.6096
0.0012 41.6 52000 1.7076 27.5006
0.0004 42.4 53000 1.7054 26.6553
0.0029 43.2 54000 1.6880 27.3952
0.0013 44.0 55000 1.6983 27.7722
0.0021 44.8 56000 1.7000 28.0275
0.0007 45.6 57000 1.6831 27.9268
0.0007 46.4 58000 1.6989 26.1284
0.0025 47.2 59000 1.6858 27.2372
0.0003 48.0 60000 1.7004 29.3213
0.0011 48.8 61000 1.7122 26.9433
0.0017 49.6 62000 1.7014 25.8474
0.0023 50.4 63000 1.7186 26.5546
0.0031 51.2 64000 1.6963 27.2735
0.0023 52.0 65000 1.7043 26.9117
0.0004 52.8 66000 1.7068 26.3064
0.0003 53.6 67000 1.7196 27.1517
0.0012 54.4 68000 1.7213 26.9737
0.0013 55.2 69000 1.7114 26.5347
0.0007 56.0 70000 1.7245 28.1001
0.0002 56.8 71000 1.7138 27.8788
0.0001 57.6 72000 1.7182 27.3543
0.0009 58.4 73000 1.7354 28.0942
0.0023 59.2 74000 1.7314 27.0077
0.0013 60.0 75000 1.7350 28.0439
0.0019 60.8 76000 1.7322 27.7512
0.0025 61.6 77000 1.7620 27.5978
0.0005 62.4 78000 1.7201 27.7102
0.0043 63.2 79000 1.7405 27.8565
0.0006 64.0 80000 1.7550 29.4407
0.0004 64.8 81000 1.7410 27.6189
0.0002 65.6 82000 1.7312 29.3189
0.0006 66.4 83000 1.7476 26.5312
0.0033 67.2 84000 1.7571 26.8098
0.0041 68.0 85000 1.7463 27.2512
0.0014 68.8 86000 1.7401 26.3485
0.0001 69.6 87000 1.7465 27.6622
0.0011 70.4 88000 1.7494 26.9468
0.0001 71.2 89000 1.7423 28.5684
0.0037 72.0 90000 1.7728 29.7896
0.0002 72.8 91000 1.7555 26.9140
0.0006 73.6 92000 1.7685 26.7606
0.0014 74.4 93000 1.7494 26.8204
0.001 75.2 94000 1.7719 26.7150
0.0005 76.0 95000 1.7754 26.6892
0.0022 76.8 96000 1.7698 27.4807
0.0017 77.6 97000 1.7830 27.7465
0.0001 78.4 98000 1.7751 27.0487
0.0025 79.2 99000 1.7768 27.1505
0.0001 80.0 100000 1.7671 27.2805
0.0019 80.8 101000 1.7910 27.3027
0.0031 81.6 102000 1.7965 27.6809
0.0016 82.4 103000 1.7893 28.0146
0.0002 83.2 104000 1.7939 26.7384
0.0001 84.0 105000 1.7925 27.3156
0.0001 84.8 106000 1.7866 27.8718
0.0001 85.6 107000 1.7789 27.0171
0.0001 86.4 108000 1.7738 26.3977
0.0005 87.2 109000 1.7748 27.8577
0.0015 88.0 110000 1.7922 26.6611
0.0003 88.8 111000 1.7987 28.0486
0.0017 89.6 112000 1.7901 28.0860
0.0001 90.4 113000 1.8013 27.7523
0.0001 91.2 114000 1.8045 26.9796
0.0005 92.0 115000 1.7989 27.0112
0.0024 92.8 116000 1.8068 26.9597
0.0001 93.6 117000 1.8033 29.2651
0.0001 94.4 118000 1.7955 28.6984
0.0004 95.2 119000 1.7956 27.0920
0.0005 96.0 120000 1.7868 27.3426
0.0011 96.8 121000 1.8209 26.8005
0.0005 97.6 122000 1.8152 29.9816
0.002 98.4 123000 1.8174 26.7255
0.0001 99.2 124000 1.8194 26.9164
0.0004 100.0 125000 1.8307 27.7289
0.0001 100.8 126000 1.8151 26.9609
0.0001 101.6 127000 1.8080 28.0158
0.0001 102.4 128000 1.8349 26.7571
0.0002 103.2 129000 1.8371 27.0686
0.0006 104.0 130000 1.8133 27.4842
0.0001 104.8 131000 1.8246 26.5768
0.0005 105.6 132000 1.8180 26.7489
0.0001 106.4 133000 1.8261 27.4409
0.0001 107.2 134000 1.8101 26.7443
0.0003 108.0 135000 1.8164 27.3800
0.0001 108.8 136000 1.8152 26.9679
0.0001 109.6 137000 1.8121 26.6775
0.0001 110.4 138000 1.8317 27.7968
0.0 111.2 139000 1.8266 26.6869
0.0001 112.0 140000 1.8331 27.2067
0.0045 112.8 141000 1.8353 27.0276
0.0024 113.6 142000 1.8416 28.0345
0.0005 114.4 143000 1.8359 27.8460
0.0 115.2 144000 1.8390 27.1892
0.0 116.0 145000 1.8311 27.2934
0.0 116.8 146000 1.8473 27.4386
0.0016 117.6 147000 1.8554 27.3964
0.0001 118.4 148000 1.8608 26.5148
0.0021 119.2 149000 1.8582 26.9058
0.0003 120.0 150000 1.8574 26.9269
0.0002 120.8 151000 1.8568 27.2079
0.0 121.6 152000 1.8623 26.5417
0.0001 122.4 153000 1.8500 27.2009
0.0 123.2 154000 1.8604 27.6236
0.0 124.0 155000 1.8739 27.8203
0.0001 124.8 156000 1.8705 26.8215
0.0 125.6 157000 1.8521 27.1283
0.0 126.4 158000 1.8607 26.5241
0.0 127.2 159000 1.8646 27.1423
0.0001 128.0 160000 1.8665 26.9538
0.0002 128.8 161000 1.8768 26.7841
0.0002 129.6 162000 1.8722 26.7864
0.0005 130.4 163000 1.8626 27.3695
0.0 131.2 164000 1.8646 27.8425
0.0 132.0 165000 1.8758 27.8062
0.0002 132.8 166000 1.8780 28.5110
0.0 133.6 167000 1.8672 26.1319
0.0 134.4 168000 1.8833 26.4422
0.0009 135.2 169000 1.8828 27.4421
0.0 136.0 170000 1.8933 27.2243
0.0001 136.8 171000 1.8913 27.2302
0.0 137.6 172000 1.8941 27.2746
0.0001 138.4 173000 1.8873 26.5089
0.0004 139.2 174000 1.8966 26.7969
0.0 140.0 175000 1.8916 26.6611
0.0 140.8 176000 1.8890 26.4199
0.0 141.6 177000 1.8991 28.7066
0.0 142.4 178000 1.8963 27.2021
0.0 143.2 179000 1.8996 27.7231
0.0001 144.0 180000 1.9000 28.4513
0.0 144.8 181000 1.9029 27.0428
0.0 145.6 182000 1.9119 27.1540
0.0 146.4 183000 1.8947 26.8684
0.0 147.2 184000 1.9096 27.1131
0.0 148.0 185000 1.9065 25.9961
0.0 148.8 186000 1.9112 27.3004
0.0013 149.6 187000 1.9016 27.0182
0.0 150.4 188000 1.9075 26.8637
0.0 151.2 189000 1.9189 27.3016
0.0 152.0 190000 1.9179 28.9431
0.0 152.8 191000 1.9277 27.1283
0.0 153.6 192000 1.9123 27.5463
0.0001 154.4 193000 1.9066 26.6459
0.0002 155.2 194000 1.9222 26.8168
0.0 156.0 195000 1.9263 27.1435
0.0 156.8 196000 1.9363 26.9187
0.0 157.6 197000 1.9299 26.0546
0.0 158.4 198000 1.9429 27.1704
0.0014 159.2 199000 1.9413 26.4609
0.0 160.0 200000 1.9294 26.8567
0.0 160.8 201000 1.9351 27.6727
0.0 161.6 202000 1.9396 26.8297
0.0 162.4 203000 1.9388 26.9292
0.0 163.2 204000 1.9436 26.8531
0.0 164.0 205000 1.9439 27.5486
0.0 164.8 206000 1.9380 27.5252
0.0 165.6 207000 1.9396 26.4843
0.0 166.4 208000 1.9379 26.1846
0.0011 167.2 209000 1.9598 27.2407
0.0 168.0 210000 1.9474 26.6834
0.0 168.8 211000 1.9509 27.3367
0.0 169.6 212000 1.9567 27.4948
0.0 170.4 213000 1.9584 27.3671
0.0009 171.2 214000 1.9578 26.8168
0.0 172.0 215000 1.9477 27.9362
0.0007 172.8 216000 1.9651 27.3484
0.0 173.6 217000 1.9491 26.4515
0.0 174.4 218000 1.9434 27.3507
0.0001 175.2 219000 1.9572 27.3133
0.0 176.0 220000 1.9570 27.3812
0.0 176.8 221000 1.9577 27.4339
0.0 177.6 222000 1.9655 27.4924
0.0 178.4 223000 1.9625 27.2021
0.0 179.2 224000 1.9601 27.0346
0.0 180.0 225000 1.9703 26.8988
0.0 180.8 226000 1.9747 26.4539
0.0 181.6 227000 1.9728 26.4106
0.0 182.4 228000 1.9776 27.2372
0.0 183.2 229000 1.9866 26.7969
0.0 184.0 230000 1.9857 26.9164
0.0 184.8 231000 1.9847 26.5113
0.0 185.6 232000 1.9850 27.0897
0.0004 186.4 233000 1.9967 27.4749
0.0 187.2 234000 1.9906 26.5464
0.0 188.0 235000 2.0016 27.7336
0.0 188.8 236000 2.0036 26.6775
0.0 189.6 237000 1.9978 26.6119
0.0 190.4 238000 1.9968 27.2711
0.0 191.2 239000 1.9970 26.6319
0.0 192.0 240000 1.9969 26.8812
0.0 192.8 241000 2.0076 27.1201
0.0 193.6 242000 2.0073 26.4644
0.0 194.4 243000 2.0097 26.0371
0.0 195.2 244000 2.0108 25.8544
0.0 196.0 245000 2.0138 26.1998
0.0 196.8 246000 2.0177 26.4761
0.0 197.6 247000 2.0226 26.4925
0.0 198.4 248000 2.0277 27.0194
0.0 199.2 249000 2.0331 26.4059
0.0 200.0 250000 2.0388 26.0980
0.0 200.8 251000 2.0451 26.4562
0.0 201.6 252000 2.0527 26.1085
0.0 202.4 253000 2.0578 26.6529
0.0 203.2 254000 2.0631 26.5195
0.0 204.0 255000 2.0665 26.2314
0.0 204.8 256000 2.0711 26.5312
0.0 205.6 257000 2.0749 26.7021
0.0 206.4 258000 2.0747 26.2525
0.0 207.2 259000 2.0755 26.0277
0.0 208.0 260000 2.0746 25.9457
0.0 208.8 261000 2.0739 25.8404
0.0 209.6 262000 2.0720 25.7151
0.0 210.4 263000 2.0695 25.7151
0.0 211.2 264000 2.0669 25.6156
0.0 212.0 265000 2.0652 25.9130
0.0 212.8 266000 2.0625 25.7795
0.0 213.6 267000 2.0598 26.0827
0.0 214.4 268000 2.0576 25.6928
0.0 215.2 269000 2.0546 26.0628
0.0 216.0 270000 2.0530 25.6472
0.0 216.8 271000 2.0506 25.8076
0.0 217.6 272000 2.0476 25.9200
0.0 218.4 273000 2.0452 26.2595
0.0 219.2 274000 2.0437 26.0816
0.0 220.0 275000 2.0422 26.0382
0.0 220.8 276000 2.0401 26.0078
0.0 221.6 277000 2.0380 26.5440
0.0 222.4 278000 2.0358 26.1401
0.0 223.2 279000 2.0347 26.5487
0.0 224.0 280000 2.0334 26.1623
0.0 224.8 281000 2.0321 26.3743
0.0 225.6 282000 2.0303 26.2630
0.0 226.4 283000 2.0290 26.5604
0.0 227.2 284000 2.0280 26.7618
0.0 228.0 285000 2.0269 26.8859
0.0 228.8 286000 2.0256 26.7279
0.0 229.6 287000 2.0243 26.3871
0.0 230.4 288000 2.0238 26.6049
0.0 231.2 289000 2.0223 26.5452
0.0 232.0 290000 2.0222 26.4761
0.0 232.8 291000 2.0215 26.3497
0.0 233.6 292000 2.0206 26.4024
0.0 234.4 293000 2.0202 26.7899
0.0 235.2 294000 2.0196 26.8051
0.0 236.0 295000 2.0192 26.7466
0.0 236.8 296000 2.0187 26.5686
0.0 237.6 297000 2.0185 26.5956
0.0 238.4 298000 2.0183 26.2747
0.0 239.2 299000 2.0182 26.5253
0.0 240.0 300000 2.0181 26.4902

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
32
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hyk000/gg

Finetuned
(380)
this model

Dataset used to train hyk000/gg