File size: 14,958 Bytes
813a1db
 
 
 
d66a59f
 
 
813a1db
 
 
 
 
 
 
1f758f7
813a1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d71c4
b415999
f8d71c4
74075f5
f8d71c4
813a1db
f8d71c4
813a1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d71c4
 
 
 
 
 
337b02e
f8d71c4
 
 
 
 
813a1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d71c4
 
 
 
 
 
 
 
 
 
 
337b02e
f8d71c4
337b02e
f8d71c4
 
 
 
337b02e
f8d71c4
 
 
337b02e
f8d71c4
 
 
337b02e
 
 
f8d71c4
 
 
 
337b02e
d66a59f
 
3f72c90
f8d71c4
 
d66a59f
f8d71c4
 
 
 
337b02e
 
 
 
f8d71c4
 
 
 
 
337b02e
67d1b71
 
f8d71c4
 
 
 
 
 
337b02e
 
 
f8d71c4
 
 
337b02e
 
 
 
 
 
 
 
 
 
f8d71c4
813a1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f758f7
813a1db
 
 
f8d71c4
813a1db
f8d71c4
813a1db
 
 
 
f776d9e
813a1db
 
 
 
f9ef8dc
337b02e
3697fb9
f8d71c4
337b02e
 
f8d71c4
337b02e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
# import nltk
# nltk.download('punkt')
# nltk.download('averaged_perceptron_tagger')

from utils import clean_str, clean_str_nopunct
import torch
from utils import MultiHeadModel, BertInputBuilder, get_num_words

import transformers
from transformers import BertTokenizer, BertForSequenceClassification
from transformers.utils import logging

transformers.logging.set_verbosity_debug()

UPTAKE_MODEL = 'ddemszky/uptake-model'
REASONING_MODEL = 'ddemszky/student-reasoning'
QUESTION_MODEL = 'ddemszky/question-detection'


class Utterance:
    def __init__(self, speaker, text, uid=None,
                 transcript=None, starttime=None, endtime=None, **kwargs):
        self.speaker = speaker
        self.text = text
        self.uid = uid
        self.starttime = starttime
        self.endtime = endtime
        self.transcript = weakref.ref(transcript) if transcript else None
        self.props = kwargs
        self.role = None
        self.word_count = self.get_num_words()
        self.timestamp = [starttime, endtime]
        self.unit_measure = None
        self.aggregate_unit_measure = endtime

        # moments
        self.uptake = None
        self.reasoning = None
        self.question = None

    def get_clean_text(self, remove_punct=False):
        if remove_punct:
            return clean_str_nopunct(self.text)
        return clean_str(self.text)

    def get_num_words(self):
        return get_num_words(self.text)

    def to_dict(self):
        return {
            'speaker': self.speaker,
            'text': self.text,
            'uid': self.uid,
            'starttime': self.starttime,
            'endtime': self.endtime,
            'uptake': self.uptake,
            'reasoning': self.reasoning,
            'question':  self.question,
            **self.props
        }

    def to_talk_timeline_dict(self):
        return{
            'speaker': self.speaker,
            'text': self.text,
            'role': self.role,
            'timestamp': self.timestamp,
            'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False},
            'unitMeasure': self.unit_measure,
            'aggregateUnitMeasure': self.aggregate_unit_measure,
            'wordCount': self.word_count
        }

    def __repr__(self):
        return f"Utterance(speaker='{self.speaker}'," \
               f"text='{self.text}', uid={self.uid}," \
               f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"


class Transcript:
    def __init__(self, **kwargs):
        self.utterances = []
        self.params = kwargs

    def add_utterance(self, utterance):
        utterance.transcript = weakref.ref(self)
        self.utterances.append(utterance)

    def get_idx(self, idx):
        if idx >= len(self.utterances):
            return None
        return self.utterances[idx]

    def get_uid(self, uid):
        for utt in self.utterances:
            if utt.uid == uid:
                return utt
        return None

    def length(self):
        return len(self.utterances)

    def update_utterance_roles(self, uptake_speaker):
        for utt in self.utterances:
            if (utt.speaker == uptake_speaker):
                utt.role = 'teacher'
            else:
                utt.role = 'student'

    def get_talk_distribution_and_length(self, uptake_speaker):
        if ((uptake_speaker is None)):
            return None
        teacher_words = 0
        teacher_utt_count = 0
        student_words = 0
        student_utt_count = 0
        for utt in self.utterances:
            if (utt.speaker == uptake_speaker):
                utt.role = 'teacher'
                teacher_words += utt.get_num_words()
                teacher_utt_count += 1
            else:
                utt.role = 'student'
                student_words += utt.get_num_words()
                student_utt_count += 1
        teacher_percentage = round(
            (teacher_words / (teacher_words + student_words)) * 100)
        student_percentage = 100 - teacher_percentage
        avg_teacher_length = teacher_words / teacher_utt_count
        avg_student_length = student_words / student_utt_count
        return {'talk_distribution': {'teacher': teacher_percentage, 'student': student_percentage}}, {'talk_length': {'teacher': avg_teacher_length, 'student': avg_student_length}}

    def get_word_cloud_dicts(self):
        teacher_dict = {}
        student_dict = {}
        uptake_teacher_dict = {}
        # stopwords = nltk.corpus.stopwords.word('english')
        # print("stopwords: ", stopwords)
        for utt in self.utterances:
            words = (utt.get_clean_text(remove_punct=True)).split(' ')
            for word in words:
                # if word in stopwords: continue
                if utt.role == 'teacher':
                    if word not in teacher_dict:
                        teacher_dict[word] = 0
                    teacher_dict[word] += 1
                    if utt.uptake == 1:
                        if word not in uptake_teacher_dict:
                            uptake_teacher_dict[word] = 0
                        uptake_teacher_dict[word] += 1
                else:
                    if word not in student_dict:
                        student_dict[word] = 0
                    student_dict[word] += 1
        dict_list = []
        uptake_dict_list = []
        for word in uptake_teacher_dict.keys():
            uptake_dict_list.append({'text': word, 'value': uptake_teacher_dict[word], 'category': 'teacher'})
        for word in teacher_dict.keys():
            dict_list.append(
                {'text': word, 'value': teacher_dict[word], 'category': 'teacher'})
        for word in student_dict.keys():
            dict_list.append(
                {'text': word, 'value': student_dict[word], 'category': 'student'})
        sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
        sorted_uptake_dict_list = sorted(uptake_dict_list, key=lambda x: x['value'], reverse=True)
        return {'common_top_words': sorted_dict_list[:50]}, {'uptake_top_words':sorted_uptake_dict_list[:50]}

    def get_talk_timeline(self):
        return [utterance.to_talk_timeline_dict() for utterance in self.utterances]
    
    def calculate_aggregate_word_count(self):
        unit_measures = [utt.unit_measure for utt in self.utterances]
        if None in unit_measures:
            aggregate_word_count = 0
            for utt in self.utterances: 
                aggregate_word_count += utt.get_num_words()
                utt.unit_measure = utt.get_num_words()
                utt.aggregate_unit_measure = aggregate_word_count


    def to_dict(self):
        return {
            'utterances': [utterance.to_dict() for utterance in self.utterances],
            **self.params
        }

    def __repr__(self):
        return f"Transcript(utterances={self.utterances}, custom_params={self.params})"


class QuestionModel:
    def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(
            path, head2size={"is_question": 2})
        self.model.to(self.device)

    def run_inference(self, transcript):
        self.model.eval()
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if "?" in utt.text:
                    utt.question = 1
                else:
                    text = utt.get_clean_text(remove_punct=True)
                    instance = self.input_builder.build_inputs([], text,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)
                    print(output)
                    utt.question = np.argmax(
                        output["is_question_logits"][0].tolist())

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(
                instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"],
                            return_pooler_output=False)
        return output


class ReasoningModel:
    def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = BertForSequenceClassification.from_pretrained(path)
        self.model.to(self.device)

    def run_inference(self, transcript, min_num_words=8):
        self.model.eval()
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if utt.get_num_words() >= min_num_words:
                    instance = self.input_builder.build_inputs([], utt.text,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)
                    utt.reasoning = np.argmax(output["logits"][0].tolist())

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(
                instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"])
        return output


class UptakeModel:
    def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
        self.model.to(self.device)

    def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
        self.model.eval()
        prev_num_words = 0
        prev_utt = None
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
                    textA = prev_utt.get_clean_text(remove_punct=False)
                    textB = utt.get_clean_text(remove_punct=False)
                    instance = self.input_builder.build_inputs([textA], textB,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)

                    utt.uptake = int(
                        softmax(output["nsp_logits"][0].tolist())[1] > .8)
                prev_num_words = utt.get_num_words()
                prev_utt = utt

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(
                instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"],
                            return_pooler_output=False)
        return output


class EndpointHandler():
    def __init__(self, path="."):
        print("Loading models...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `list`):
            List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
            `text` and `uid`and can include list of custom properties
            parameters (:obj: `dict`)
       Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        # get inputs
        utterances = data.pop("inputs", data)
        params = data.pop("parameters", None)

        print("EXAMPLES")
        for utt in utterances[:3]:
            print("speaker %s: %s" % (utt["speaker"], utt["text"]))

        transcript = Transcript(filename=params.pop("filename", None))
        for utt in utterances:
            transcript.add_utterance(Utterance(**utt))

        print("Running inference on %d examples..." % transcript.length())
        logging.set_verbosity_info()
        # Uptake
        uptake_model = UptakeModel(
            self.device, self.tokenizer, self.input_builder)
        uptake_speaker = params.pop("uptake_speaker", None)
        uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
                                   uptake_speaker=uptake_speaker)
        # Reasoning
        reasoning_model = ReasoningModel(
            self.device, self.tokenizer, self.input_builder)
        reasoning_model.run_inference(transcript)

        # Question
        question_model = QuestionModel(
            self.device, self.tokenizer, self.input_builder)
        question_model.run_inference(transcript)
        transcript.update_utterance_roles(uptake_speaker)
        transcript.calculate_aggregate_word_count()
        talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
        talk_timeline = transcript.get_talk_timeline()
        talk_moments = {"talk_moments": talk_timeline}
        word_cloud, uptake_word_cloud = transcript.get_word_cloud_dicts()

        return talk_dist, talk_len, talk_moments, word_cloud, uptake_word_cloud