README.md CHANGED
@@ -1,9 +0,0 @@
1
- ---
2
- license: mit
3
- base_model:
4
- - deepseek-ai/DeepSeek-V3
5
- pipeline_tag: text-generation
6
- library_name: transformers
7
- ---
8
- # DeepSeek V3 1B Test
9
- This model is randomly initialized for testing implementations, it's **not** a trained model and it will only generate random tokens.
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,62 +0,0 @@
1
- {
2
- "_name_or_path": "DeepSeek-V3-1B-Test",
3
- "architectures": [
4
- "DeepseekV3ForCausalLM"
5
- ],
6
- "attention_bias": false,
7
- "attention_dropout": 0.0,
8
- "auto_map": {
9
- "AutoConfig": "configuration_deepseek.DeepseekV3Config",
10
- "AutoModel": "modeling_deepseek.DeepseekV3Model",
11
- "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
12
- },
13
- "aux_loss_alpha": 0.001,
14
- "bos_token_id": 0,
15
- "eos_token_id": 1,
16
- "ep_size": 1,
17
- "first_k_dense_replace": 3,
18
- "hidden_act": "silu",
19
- "hidden_size": 1024,
20
- "initializer_range": 0.02,
21
- "intermediate_size": 5376,
22
- "kv_lora_rank": 512,
23
- "max_position_embeddings": 163840,
24
- "model_type": "deepseek_v3",
25
- "moe_intermediate_size": 640,
26
- "moe_layer_freq": 1,
27
- "n_group": 8,
28
- "n_routed_experts": 32,
29
- "n_shared_experts": 1,
30
- "norm_topk_prob": true,
31
- "num_attention_heads": 8,
32
- "num_experts_per_tok": 4,
33
- "num_hidden_layers": 13,
34
- "num_key_value_heads": 8,
35
- "num_nextn_predict_layers": 1,
36
- "pretraining_tp": 1,
37
- "q_lora_rank": 1536,
38
- "qk_nope_head_dim": 128,
39
- "qk_rope_head_dim": 64,
40
- "rms_norm_eps": 1e-06,
41
- "rope_scaling": {
42
- "beta_fast": 32,
43
- "beta_slow": 1,
44
- "factor": 40,
45
- "mscale": 1.0,
46
- "mscale_all_dim": 1.0,
47
- "original_max_position_embeddings": 4096,
48
- "type": "yarn"
49
- },
50
- "rope_theta": 10000,
51
- "routed_scaling_factor": 2.5,
52
- "scoring_func": "sigmoid",
53
- "seq_aux": true,
54
- "tie_word_embeddings": false,
55
- "topk_group": 4,
56
- "topk_method": "noaux_tc",
57
- "torch_dtype": "bfloat16",
58
- "transformers_version": "4.47.1",
59
- "use_cache": true,
60
- "v_head_dim": 128,
61
- "vocab_size": 129280
62
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configuration_deepseek.py DELETED
@@ -1,210 +0,0 @@
1
- from transformers.configuration_utils import PretrainedConfig
2
- from transformers.utils import logging
3
-
4
- logger = logging.get_logger(__name__)
5
-
6
- DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
- class DeepseekV3Config(PretrainedConfig):
8
- r"""
9
- This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
- defaults will yield a similar configuration to that of the DeepSeek-V3.
12
-
13
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
- documentation from [`PretrainedConfig`] for more information.
15
-
16
-
17
- Args:
18
- vocab_size (`int`, *optional*, defaults to 129280):
19
- Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
- `inputs_ids` passed when calling [`DeepseekV3Model`]
21
- hidden_size (`int`, *optional*, defaults to 4096):
22
- Dimension of the hidden representations.
23
- intermediate_size (`int`, *optional*, defaults to 11008):
24
- Dimension of the MLP representations.
25
- moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
- Dimension of the MoE representations.
27
- num_hidden_layers (`int`, *optional*, defaults to 32):
28
- Number of hidden layers in the Transformer decoder.
29
- num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
- Number of nextn predict layers in the DeepSeekV3 Model.
31
- num_attention_heads (`int`, *optional*, defaults to 32):
32
- Number of attention heads for each attention layer in the Transformer decoder.
33
- n_shared_experts (`int`, *optional*, defaults to None):
34
- Number of shared experts, None means dense model.
35
- n_routed_experts (`int`, *optional*, defaults to None):
36
- Number of routed experts, None means dense model.
37
- routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
- Scaling factor or routed experts.
39
- topk_method (`str`, *optional*, defaults to `gready`):
40
- Topk method used in routed gate.
41
- n_group (`int`, *optional*, defaults to None):
42
- Number of groups for routed experts.
43
- topk_group (`int`, *optional*, defaults to None):
44
- Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
- num_experts_per_tok (`int`, *optional*, defaults to None):
46
- Number of selected experts, None means dense model.
47
- moe_layer_freq (`int`, *optional*, defaults to 1):
48
- The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
- first_k_dense_replace (`int`, *optional*, defaults to 0):
50
- Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
- \--k dense layers--/
52
- norm_topk_prob (`bool`, *optional*, defaults to False):
53
- Whether to normalize the weights of the routed experts.
54
- scoring_func (`str`, *optional*, defaults to 'softmax'):
55
- Method of computing expert weights.
56
- aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
- Auxiliary loss weight coefficient.
58
- seq_aux = (`bool`, *optional*, defaults to True):
59
- Whether to compute the auxiliary loss for each individual sample.
60
- num_key_value_heads (`int`, *optional*):
61
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
- by meanpooling all the original heads within that group. For more details checkout [this
66
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
- `num_attention_heads`.
68
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
- The non-linear activation function (function or string) in the decoder.
70
- max_position_embeddings (`int`, *optional*, defaults to 2048):
71
- The maximum sequence length that this model might ever be used with.
72
- initializer_range (`float`, *optional*, defaults to 0.02):
73
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
- The epsilon used by the rms normalization layers.
76
- use_cache (`bool`, *optional*, defaults to `True`):
77
- Whether or not the model should return the last key/values attentions (not used by all models). Only
78
- relevant if `config.is_decoder=True`.
79
- pad_token_id (`int`, *optional*):
80
- Padding token id.
81
- bos_token_id (`int`, *optional*, defaults to 1):
82
- Beginning of stream token id.
83
- eos_token_id (`int`, *optional*, defaults to 2):
84
- End of stream token id.
85
- pretraining_tp (`int`, *optional*, defaults to 1):
86
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
- document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
- necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
- issue](https://github.com/pytorch/pytorch/issues/76232).
90
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
- Whether to tie weight embeddings
92
- rope_theta (`float`, *optional*, defaults to 10000.0):
93
- The base period of the RoPE embeddings.
94
- rope_scaling (`Dict`, *optional*):
95
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
- strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
- `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
- `max_position_embeddings` to the expected new maximum.
99
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
- attention_dropout (`float`, *optional*, defaults to 0.0):
102
- The dropout ratio for the attention probabilities.
103
-
104
- ```python
105
- >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
-
107
- >>> # Initializing a Deepseek-V3 style configuration
108
- >>> configuration = DeepseekV3Config()
109
-
110
- >>> # Accessing the model configuration
111
- >>> configuration = model.config
112
- ```"""
113
-
114
- model_type = "deepseek_v3"
115
- keys_to_ignore_at_inference = ["past_key_values"]
116
-
117
- def __init__(
118
- self,
119
- vocab_size=129280,
120
- hidden_size=7168,
121
- intermediate_size=18432,
122
- moe_intermediate_size = 2048,
123
- num_hidden_layers=61,
124
- num_nextn_predict_layers=1,
125
- num_attention_heads=128,
126
- num_key_value_heads=128,
127
- n_shared_experts = 1,
128
- n_routed_experts = 256,
129
- ep_size = 1,
130
- routed_scaling_factor = 2.5,
131
- kv_lora_rank = 512,
132
- q_lora_rank = 1536,
133
- qk_rope_head_dim = 64,
134
- v_head_dim = 128,
135
- qk_nope_head_dim = 128,
136
- topk_method = 'noaux_tc',
137
- n_group = 8,
138
- topk_group = 4,
139
- num_experts_per_tok = 8,
140
- moe_layer_freq = 1,
141
- first_k_dense_replace = 3,
142
- norm_topk_prob = True,
143
- scoring_func = 'sigmoid',
144
- aux_loss_alpha = 0.001,
145
- seq_aux = True,
146
- hidden_act="silu",
147
- max_position_embeddings=4096,
148
- initializer_range=0.02,
149
- rms_norm_eps=1e-6,
150
- use_cache=True,
151
- pad_token_id=None,
152
- bos_token_id=0,
153
- eos_token_id=1,
154
- pretraining_tp=1,
155
- tie_word_embeddings=False,
156
- rope_theta=10000.0,
157
- rope_scaling=None,
158
- attention_bias=False,
159
- attention_dropout=0.0,
160
- **kwargs,
161
- ):
162
- self.vocab_size = vocab_size
163
- self.max_position_embeddings = max_position_embeddings
164
- self.hidden_size = hidden_size
165
- self.intermediate_size = intermediate_size
166
- self.moe_intermediate_size = moe_intermediate_size
167
- self.num_hidden_layers = num_hidden_layers
168
- self.num_nextn_predict_layers = num_nextn_predict_layers
169
- self.num_attention_heads = num_attention_heads
170
- self.n_shared_experts = n_shared_experts
171
- self.n_routed_experts = n_routed_experts
172
- self.ep_size = ep_size
173
- self.routed_scaling_factor = routed_scaling_factor
174
- self.kv_lora_rank = kv_lora_rank
175
- self.q_lora_rank = q_lora_rank
176
- self.qk_rope_head_dim = qk_rope_head_dim
177
- self.v_head_dim = v_head_dim
178
- self.qk_nope_head_dim = qk_nope_head_dim
179
- self.topk_method = topk_method
180
- self.n_group = n_group
181
- self.topk_group = topk_group
182
- self.num_experts_per_tok = num_experts_per_tok
183
- self.moe_layer_freq = moe_layer_freq
184
- self.first_k_dense_replace = first_k_dense_replace
185
- self.norm_topk_prob = norm_topk_prob
186
- self.scoring_func = scoring_func
187
- self.aux_loss_alpha = aux_loss_alpha
188
- self.seq_aux = seq_aux
189
- # for backward compatibility
190
- if num_key_value_heads is None:
191
- num_key_value_heads = num_attention_heads
192
-
193
- self.num_key_value_heads = num_key_value_heads
194
- self.hidden_act = hidden_act
195
- self.initializer_range = initializer_range
196
- self.rms_norm_eps = rms_norm_eps
197
- self.pretraining_tp = pretraining_tp
198
- self.use_cache = use_cache
199
- self.rope_theta = rope_theta
200
- self.rope_scaling = rope_scaling
201
- self.attention_bias = attention_bias
202
- self.attention_dropout = attention_dropout
203
-
204
- super().__init__(
205
- pad_token_id=pad_token_id,
206
- bos_token_id=bos_token_id,
207
- eos_token_id=eos_token_id,
208
- tie_word_embeddings=tie_word_embeddings,
209
- **kwargs,
210
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json DELETED
@@ -1,6 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 0,
4
- "eos_token_id": 1,
5
- "transformers_version": "4.47.1"
6
- }
 
 
 
 
 
 
 
model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a9db5309afa023828200507bbe04d1aaff8667510b47b24ac999f340876da1ee
3
- size 2099235336
 
 
 
 
modeling_deepseek.py DELETED
@@ -1,1796 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch DeepSeek model."""
21
- import math
22
- import warnings
23
- from typing import List, Optional, Tuple, Union
24
-
25
- import torch
26
- import torch.nn.functional as F
27
- import torch.utils.checkpoint
28
- from torch import nn
29
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
- from torch.library import custom_op
31
-
32
- from transformers.activations import ACT2FN
33
- from transformers.cache_utils import Cache, DynamicCache
34
- from transformers.modeling_attn_mask_utils import (
35
- AttentionMaskConverter,
36
- _prepare_4d_attention_mask,
37
- _prepare_4d_causal_attention_mask,
38
- )
39
- from transformers.modeling_outputs import (
40
- BaseModelOutputWithPast,
41
- CausalLMOutputWithPast,
42
- SequenceClassifierOutputWithPast,
43
- )
44
- from transformers.modeling_utils import PreTrainedModel
45
- from transformers.pytorch_utils import (
46
- ALL_LAYERNORM_LAYERS,
47
- )
48
- from transformers.utils import (
49
- add_start_docstrings,
50
- add_start_docstrings_to_model_forward,
51
- is_flash_attn_2_available,
52
- is_flash_attn_greater_or_equal_2_10,
53
- logging,
54
- replace_return_docstrings,
55
- )
56
- from transformers.utils.import_utils import is_torch_fx_available
57
- from .configuration_deepseek import DeepseekV3Config
58
- import torch.distributed as dist
59
- import numpy as np
60
-
61
- if is_flash_attn_2_available():
62
- from flash_attn import flash_attn_func, flash_attn_varlen_func
63
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
-
65
-
66
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
- # It means that the function will not be traced through and simply appear as a node in the graph.
68
- if is_torch_fx_available():
69
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
70
-
71
-
72
- logger = logging.get_logger(__name__)
73
-
74
- _CONFIG_FOR_DOC = "DeepseekV3Config"
75
-
76
-
77
- def _get_unpad_data(attention_mask):
78
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
79
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
80
- max_seqlen_in_batch = seqlens_in_batch.max().item()
81
- cu_seqlens = F.pad(
82
- torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
83
- )
84
- return (
85
- indices,
86
- cu_seqlens,
87
- max_seqlen_in_batch,
88
- )
89
-
90
-
91
- class DeepseekV3RMSNorm(nn.Module):
92
- def __init__(self, hidden_size, eps=1e-6):
93
- """
94
- DeepseekV3RMSNorm is equivalent to T5LayerNorm
95
- """
96
- super().__init__()
97
- self.weight = nn.Parameter(torch.ones(hidden_size))
98
- self.variance_epsilon = eps
99
-
100
- def forward(self, hidden_states):
101
- input_dtype = hidden_states.dtype
102
- hidden_states = hidden_states.to(torch.float32)
103
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
104
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
105
- return self.weight * hidden_states.to(input_dtype)
106
-
107
-
108
- ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
109
-
110
-
111
- class DeepseekV3RotaryEmbedding(nn.Module):
112
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
113
- super().__init__()
114
-
115
- self.dim = dim
116
- self.max_position_embeddings = max_position_embeddings
117
- self.base = base
118
- inv_freq = 1.0 / (
119
- self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
120
- )
121
- self.register_buffer("inv_freq", inv_freq, persistent=False)
122
-
123
- # Build here to make `torch.jit.trace` work.
124
- self._set_cos_sin_cache(
125
- seq_len=max_position_embeddings,
126
- device=self.inv_freq.device,
127
- dtype=torch.get_default_dtype(),
128
- )
129
- self.max_seq_len_cached = None
130
-
131
- def _set_cos_sin_cache(self, seq_len, device, dtype):
132
- self.max_seq_len_cached = seq_len
133
- t = torch.arange(
134
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
135
- )
136
-
137
- freqs = torch.outer(t, self.inv_freq.to(t.device))
138
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
139
- emb = torch.cat((freqs, freqs), dim=-1)
140
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
141
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
142
-
143
- def forward(self, x, seq_len=None):
144
- # x: [bs, num_attention_heads, seq_len, head_size]
145
- if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
146
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
147
-
148
- return (
149
- self.cos_cached[:seq_len].to(dtype=x.dtype),
150
- self.sin_cached[:seq_len].to(dtype=x.dtype),
151
- )
152
-
153
-
154
- # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
155
- class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
156
- """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
157
-
158
- def __init__(
159
- self,
160
- dim,
161
- max_position_embeddings=2048,
162
- base=10000,
163
- device=None,
164
- scaling_factor=1.0,
165
- ):
166
- self.scaling_factor = scaling_factor
167
- super().__init__(dim, max_position_embeddings, base, device)
168
-
169
- def _set_cos_sin_cache(self, seq_len, device, dtype):
170
- self.max_seq_len_cached = seq_len
171
- t = torch.arange(
172
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
173
- )
174
- t = t / self.scaling_factor
175
-
176
- freqs = torch.outer(t, self.inv_freq)
177
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
- emb = torch.cat((freqs, freqs), dim=-1)
179
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
180
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
181
-
182
-
183
- # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
184
- class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
185
- """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
186
-
187
- def __init__(
188
- self,
189
- dim,
190
- max_position_embeddings=2048,
191
- base=10000,
192
- device=None,
193
- scaling_factor=1.0,
194
- ):
195
- self.scaling_factor = scaling_factor
196
- super().__init__(dim, max_position_embeddings, base, device)
197
-
198
- def _set_cos_sin_cache(self, seq_len, device, dtype):
199
- self.max_seq_len_cached = seq_len
200
-
201
- if seq_len > self.max_position_embeddings:
202
- base = self.base * (
203
- (self.scaling_factor * seq_len / self.max_position_embeddings)
204
- - (self.scaling_factor - 1)
205
- ) ** (self.dim / (self.dim - 2))
206
- inv_freq = 1.0 / (
207
- base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
208
- )
209
- self.register_buffer("inv_freq", inv_freq, persistent=False)
210
-
211
- t = torch.arange(
212
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
213
- )
214
-
215
- freqs = torch.outer(t, self.inv_freq)
216
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
217
- emb = torch.cat((freqs, freqs), dim=-1)
218
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
219
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
220
-
221
-
222
- # Inverse dim formula to find dim based on number of rotations
223
- def yarn_find_correction_dim(
224
- num_rotations, dim, base=10000, max_position_embeddings=2048
225
- ):
226
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
227
- 2 * math.log(base)
228
- )
229
-
230
-
231
- # Find dim range bounds based on rotations
232
- def yarn_find_correction_range(
233
- low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
234
- ):
235
- low = math.floor(
236
- yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
237
- )
238
- high = math.ceil(
239
- yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
240
- )
241
- return max(low, 0), min(high, dim - 1) # Clamp values just in case
242
-
243
-
244
- def yarn_get_mscale(scale=1, mscale=1):
245
- if scale <= 1:
246
- return 1.0
247
- return 0.1 * mscale * math.log(scale) + 1.0
248
-
249
-
250
- def yarn_linear_ramp_mask(min, max, dim):
251
- if min == max:
252
- max += 0.001 # Prevent singularity
253
-
254
- linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
255
- ramp_func = torch.clamp(linear_func, 0, 1)
256
- return ramp_func
257
-
258
-
259
- class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
260
-
261
- def __init__(
262
- self,
263
- dim,
264
- max_position_embeddings=2048,
265
- base=10000,
266
- device=None,
267
- scaling_factor=1.0,
268
- original_max_position_embeddings=4096,
269
- beta_fast=32,
270
- beta_slow=1,
271
- mscale=1,
272
- mscale_all_dim=0,
273
- ):
274
- self.scaling_factor = scaling_factor
275
- self.original_max_position_embeddings = original_max_position_embeddings
276
- self.beta_fast = beta_fast
277
- self.beta_slow = beta_slow
278
- self.mscale = mscale
279
- self.mscale_all_dim = mscale_all_dim
280
- super().__init__(dim, max_position_embeddings, base, device)
281
-
282
- def _set_cos_sin_cache(self, seq_len, device, dtype):
283
- self.max_seq_len_cached = seq_len
284
- dim = self.dim
285
-
286
- freq_extra = 1.0 / (
287
- self.base
288
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
289
- )
290
- freq_inter = 1.0 / (
291
- self.scaling_factor
292
- * self.base
293
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
294
- )
295
-
296
- low, high = yarn_find_correction_range(
297
- self.beta_fast,
298
- self.beta_slow,
299
- dim,
300
- self.base,
301
- self.original_max_position_embeddings,
302
- )
303
- inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
304
- device=device, dtype=torch.float32
305
- )
306
- inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
307
- self.register_buffer("inv_freq", inv_freq, persistent=False)
308
-
309
- t = torch.arange(seq_len, device=device, dtype=torch.float32)
310
-
311
- freqs = torch.outer(t, inv_freq)
312
-
313
- _mscale = float(
314
- yarn_get_mscale(self.scaling_factor, self.mscale)
315
- / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
316
- )
317
-
318
- emb = torch.cat((freqs, freqs), dim=-1)
319
- self.register_buffer(
320
- "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
321
- )
322
- self.register_buffer(
323
- "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
324
- )
325
-
326
-
327
- # Copied from transformers.models.llama.modeling_llama.rotate_half
328
- def rotate_half(x):
329
- """Rotates half the hidden dims of the input."""
330
- x1 = x[..., : x.shape[-1] // 2]
331
- x2 = x[..., x.shape[-1] // 2 :]
332
- return torch.cat((-x2, x1), dim=-1)
333
-
334
-
335
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
336
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
337
- """Applies Rotary Position Embedding to the query and key tensors.
338
-
339
- Args:
340
- q (`torch.Tensor`): The query tensor.
341
- k (`torch.Tensor`): The key tensor.
342
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
343
- sin (`torch.Tensor`): The sine part of the rotary embedding.
344
- position_ids (`torch.Tensor`):
345
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
346
- used to pass offsetted position ids when working with a KV-cache.
347
- unsqueeze_dim (`int`, *optional*, defaults to 1):
348
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
349
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
350
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
351
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
352
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
353
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
354
- Returns:
355
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
356
- """
357
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
358
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
359
-
360
- b, h, s, d = q.shape
361
- q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
362
-
363
- b, h, s, d = k.shape
364
- k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
-
366
- q_embed = (q * cos) + (rotate_half(q) * sin)
367
- k_embed = (k * cos) + (rotate_half(k) * sin)
368
- return q_embed, k_embed
369
-
370
-
371
- class DeepseekV3MLP(nn.Module):
372
- def __init__(self, config, hidden_size=None, intermediate_size=None):
373
- super().__init__()
374
- self.config = config
375
- self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
376
- self.intermediate_size = (
377
- config.intermediate_size if intermediate_size is None else intermediate_size
378
- )
379
-
380
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
381
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
382
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
383
- self.act_fn = ACT2FN[config.hidden_act]
384
-
385
- def forward(self, x):
386
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
387
- return down_proj
388
-
389
-
390
- class MoEGate(nn.Module):
391
- def __init__(self, config):
392
- super().__init__()
393
- self.config = config
394
- self.top_k = config.num_experts_per_tok
395
- self.n_routed_experts = config.n_routed_experts
396
- self.routed_scaling_factor = config.routed_scaling_factor
397
- self.scoring_func = config.scoring_func
398
- self.seq_aux = config.seq_aux
399
- self.topk_method = config.topk_method
400
- self.n_group = config.n_group
401
- self.topk_group = config.topk_group
402
-
403
- # topk selection algorithm
404
- self.norm_topk_prob = config.norm_topk_prob
405
- self.gating_dim = config.hidden_size
406
- self.weight = nn.Parameter(
407
- torch.empty((self.n_routed_experts, self.gating_dim))
408
- )
409
- if self.topk_method == "noaux_tc":
410
- self.e_score_correction_bias = nn.Parameter(
411
- torch.empty((self.n_routed_experts))
412
- )
413
- self.reset_parameters()
414
-
415
- def reset_parameters(self) -> None:
416
- import torch.nn.init as init
417
-
418
- init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
-
420
- def forward(self, hidden_states):
421
- bsz, seq_len, h = hidden_states.shape
422
- ### compute gating score
423
- hidden_states = hidden_states.view(-1, h)
424
- logits = F.linear(
425
- hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
- )
427
- if self.scoring_func == "sigmoid":
428
- scores = logits.sigmoid()
429
- else:
430
- raise NotImplementedError(
431
- f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
- )
433
-
434
- ### select top-k experts
435
- if self.topk_method == "noaux_tc":
436
- assert not self.training
437
- scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
438
- group_scores = (
439
- scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
440
- ) # [n, n_group]
441
- group_idx = torch.topk(
442
- group_scores, k=self.topk_group, dim=-1, sorted=False
443
- )[
444
- 1
445
- ] # [n, top_k_group]
446
- group_mask = torch.zeros_like(group_scores) # [n, n_group]
447
- group_mask.scatter_(1, group_idx, 1) # [n, n_group]
448
- score_mask = (
449
- group_mask.unsqueeze(-1)
450
- .expand(
451
- bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
452
- )
453
- .reshape(bsz * seq_len, -1)
454
- ) # [n, e]
455
- tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
456
- _, topk_idx = torch.topk(
457
- tmp_scores, k=self.top_k, dim=-1, sorted=False
458
- )
459
- topk_weight = scores.gather(1, topk_idx)
460
- else:
461
- raise NotImplementedError(
462
- f"insupportable TopK function for MoE gating: {self.topk_method}"
463
- )
464
-
465
- ### norm gate to sum 1
466
- if self.top_k > 1 and self.norm_topk_prob:
467
- denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
468
- topk_weight = topk_weight / denominator
469
- topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
470
-
471
- return topk_idx, topk_weight
472
-
473
- @torch.library.custom_op("deepseek::moe_infer_op", mutates_args=())
474
- def moe_infer_fake(x: torch.Tensor, gate_proj_weight: torch.Tensor, up_proj_weight: torch.Tensor, down_proj_weight: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
475
- final_out = torch.empty_like(x)
476
- return final_out
477
-
478
- # FakeTensor 커널 등록
479
- @moe_infer_fake.register_fake
480
- def _(x, gate_proj_weight, up_proj_weight, down_proj_weight, topk_ids, topk_weight):
481
- return torch.empty_like(x)
482
-
483
- class DeepseekV3MoE(nn.Module):
484
- def __init__(self, config):
485
- super().__init__()
486
- self.config = config
487
- self.num_experts_per_tok = config.num_experts_per_tok
488
-
489
- if hasattr(config, "ep_size") and config.ep_size > 1:
490
- assert config.ep_size == dist.get_world_size()
491
- self.ep_size = config.ep_size
492
- self.experts_per_rank = config.n_routed_experts // config.ep_size
493
- self.ep_rank = dist.get_rank()
494
- self.experts = nn.ModuleList(
495
- [
496
- (
497
- DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
498
- if i >= self.ep_rank * self.experts_per_rank
499
- and i < (self.ep_rank + 1) * self.experts_per_rank
500
- else None
501
- )
502
- for i in range(config.n_routed_experts)
503
- ]
504
- )
505
- else:
506
- self.ep_size = 1
507
- self.experts_per_rank = config.n_routed_experts
508
- self.ep_rank = 0
509
- self.experts = nn.ModuleList(
510
- [
511
- DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
512
- for i in range(config.n_routed_experts)
513
- ]
514
- )
515
- self.gate = MoEGate(config)
516
- if config.n_shared_experts is not None:
517
- intermediate_size = config.moe_intermediate_size * config.n_shared_experts
518
- self.shared_experts = DeepseekV3MLP(config=config, intermediate_size=intermediate_size)
519
-
520
- def forward(self, hidden_states):
521
- identity = hidden_states
522
- orig_shape = hidden_states.shape
523
- topk_idx, topk_weight = self.gate(hidden_states)
524
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
525
- flat_topk_idx = topk_idx.view(-1)
526
- if not self.training:
527
- y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
528
- if self.config.n_shared_experts is not None:
529
- y = y + self.shared_experts(identity)
530
- return y
531
-
532
- @torch.no_grad()
533
- def moe_infer(self, x, topk_ids, topk_weight):
534
- # self.experts MLP모듈별 weight 추출
535
- gate_proj_weight = []
536
- up_proj_weight = []
537
- down_proj_weight = []
538
- for i in range(len(self.experts)):
539
- expert = self.experts[i]
540
- if expert is not None:
541
- gate_proj_weight.append(expert.gate_proj.weight.unsqueeze(0))
542
- up_proj_weight.append(expert.up_proj.weight.unsqueeze(0))
543
- down_proj_weight.append(expert.down_proj.weight.unsqueeze(0))
544
-
545
- gate_proj_weight = torch.cat(gate_proj_weight, dim=0) # [num_experts, hidden_size, intermediate_size]
546
- up_proj_weight = torch.cat(up_proj_weight, dim=0) # [num_experts, hidden_size, intermediate_size]
547
- down_proj_weight = torch.cat(down_proj_weight, dim=0) # [num_experts, intermediate_size, hidden_size]
548
-
549
- return moe_infer_fake(
550
- x=x,
551
- gate_proj_weight=gate_proj_weight,
552
- up_proj_weight=up_proj_weight,
553
- down_proj_weight=down_proj_weight,
554
- topk_ids=topk_ids,
555
- topk_weight=topk_weight
556
- )
557
-
558
-
559
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
560
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
561
- """
562
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
563
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
564
- """
565
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
566
- if n_rep == 1:
567
- return hidden_states
568
- hidden_states = hidden_states[:, :, None, :, :].expand(
569
- batch, num_key_value_heads, n_rep, slen, head_dim
570
- )
571
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
572
-
573
-
574
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
575
- class DeepseekV3Attention(nn.Module):
576
- """Multi-headed attention from 'Attention Is All You Need' paper"""
577
-
578
- def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
579
- super().__init__()
580
- self.config = config
581
- self.layer_idx = layer_idx
582
- if layer_idx is None:
583
- logger.warning_once(
584
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
585
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
586
- "when creating this class."
587
- )
588
-
589
- self.attention_dropout = config.attention_dropout
590
- self.hidden_size = config.hidden_size
591
- self.num_heads = config.num_attention_heads
592
-
593
- self.max_position_embeddings = config.max_position_embeddings
594
- self.rope_theta = config.rope_theta
595
- self.q_lora_rank = config.q_lora_rank
596
- self.qk_rope_head_dim = config.qk_rope_head_dim
597
- self.kv_lora_rank = config.kv_lora_rank
598
- self.v_head_dim = config.v_head_dim
599
- self.qk_nope_head_dim = config.qk_nope_head_dim
600
- self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
601
-
602
- self.is_causal = True
603
-
604
- if self.q_lora_rank is None:
605
- self.q_proj = nn.Linear(
606
- self.hidden_size, self.num_heads * self.q_head_dim, bias=False
607
- )
608
- else:
609
- self.q_a_proj = nn.Linear(
610
- self.hidden_size, config.q_lora_rank, bias=config.attention_bias
611
- )
612
- self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
613
- self.q_b_proj = nn.Linear(
614
- config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
615
- )
616
-
617
- self.kv_a_proj_with_mqa = nn.Linear(
618
- self.hidden_size,
619
- config.kv_lora_rank + config.qk_rope_head_dim,
620
- bias=config.attention_bias,
621
- )
622
- self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
623
- self.kv_b_proj = nn.Linear(
624
- config.kv_lora_rank,
625
- self.num_heads
626
- * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
627
- bias=False,
628
- )
629
-
630
- self.o_proj = nn.Linear(
631
- self.num_heads * self.v_head_dim,
632
- self.hidden_size,
633
- bias=config.attention_bias,
634
- )
635
- self._init_rope()
636
-
637
- self.softmax_scale = self.q_head_dim ** (-0.5)
638
- if self.config.rope_scaling is not None:
639
- mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
640
- scaling_factor = self.config.rope_scaling["factor"]
641
- if mscale_all_dim:
642
- mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
643
- self.softmax_scale = self.softmax_scale * mscale * mscale
644
-
645
- def _init_rope(self):
646
- if self.config.rope_scaling is None:
647
- self.rotary_emb = DeepseekV3RotaryEmbedding(
648
- self.qk_rope_head_dim,
649
- max_position_embeddings=self.max_position_embeddings,
650
- base=self.rope_theta,
651
- )
652
- else:
653
- scaling_type = self.config.rope_scaling["type"]
654
- scaling_factor = self.config.rope_scaling["factor"]
655
- if scaling_type == "linear":
656
- self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
657
- self.qk_rope_head_dim,
658
- max_position_embeddings=self.max_position_embeddings,
659
- scaling_factor=scaling_factor,
660
- base=self.rope_theta,
661
- )
662
- elif scaling_type == "dynamic":
663
- self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
664
- self.qk_rope_head_dim,
665
- max_position_embeddings=self.max_position_embeddings,
666
- scaling_factor=scaling_factor,
667
- base=self.rope_theta,
668
- )
669
- elif scaling_type == "yarn":
670
- kwargs = {
671
- key: self.config.rope_scaling[key]
672
- for key in [
673
- "original_max_position_embeddings",
674
- "beta_fast",
675
- "beta_slow",
676
- "mscale",
677
- "mscale_all_dim",
678
- ]
679
- if key in self.config.rope_scaling
680
- }
681
- self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
682
- self.qk_rope_head_dim,
683
- max_position_embeddings=self.max_position_embeddings,
684
- scaling_factor=scaling_factor,
685
- base=self.rope_theta,
686
- **kwargs,
687
- )
688
- else:
689
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
690
-
691
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
692
- return (
693
- tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
694
- .transpose(1, 2)
695
- .contiguous()
696
- )
697
-
698
- def forward(
699
- self,
700
- hidden_states: torch.Tensor,
701
- attention_mask: Optional[torch.Tensor] = None,
702
- position_ids: Optional[torch.LongTensor] = None,
703
- past_key_value: Optional[Cache] = None,
704
- output_attentions: bool = False,
705
- use_cache: bool = False,
706
- **kwargs,
707
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
708
- if "padding_mask" in kwargs:
709
- warnings.warn(
710
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
711
- )
712
- bsz, q_len, _ = hidden_states.size()
713
-
714
- if self.q_lora_rank is None:
715
- q = self.q_proj(hidden_states)
716
- else:
717
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
718
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
719
- q_nope, q_pe = torch.split(
720
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
721
- )
722
-
723
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
724
- compressed_kv, k_pe = torch.split(
725
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
726
- )
727
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
728
- kv = (
729
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
730
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
731
- .transpose(1, 2)
732
- )
733
-
734
- k_nope, value_states = torch.split(
735
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
736
- )
737
- kv_seq_len = value_states.shape[-2]
738
- if past_key_value is not None:
739
- if self.layer_idx is None:
740
- raise ValueError(
741
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
742
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
743
- "with a layer index."
744
- )
745
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
746
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
747
-
748
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
749
-
750
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
751
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
752
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
753
-
754
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
755
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
756
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
757
- if past_key_value is not None:
758
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
759
- key_states, value_states = past_key_value.update(
760
- key_states, value_states, self.layer_idx, cache_kwargs
761
- )
762
-
763
- attn_weights = (
764
- torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
765
- )
766
-
767
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
768
- raise ValueError(
769
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
770
- f" {attn_weights.size()}"
771
- )
772
- assert attention_mask is not None
773
- if attention_mask is not None:
774
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
775
- raise ValueError(
776
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
777
- )
778
- attn_weights = attn_weights + attention_mask
779
-
780
- # upcast attention to fp32
781
- attn_weights = nn.functional.softmax(
782
- attn_weights, dim=-1, dtype=torch.float32
783
- ).to(query_states.dtype)
784
- attn_weights = nn.functional.dropout(
785
- attn_weights, p=self.attention_dropout, training=self.training
786
- )
787
- attn_output = torch.matmul(attn_weights, value_states)
788
-
789
- if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
790
- raise ValueError(
791
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
792
- f" {attn_output.size()}"
793
- )
794
-
795
- attn_output = attn_output.transpose(1, 2).contiguous()
796
-
797
- attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
798
-
799
- attn_output = self.o_proj(attn_output)
800
-
801
- if not output_attentions:
802
- attn_weights = None
803
-
804
- return attn_output, attn_weights, past_key_value
805
-
806
-
807
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
808
- class DeepseekV3FlashAttention2(DeepseekV3Attention):
809
- """
810
- DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
811
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
812
- flash attention and deal with padding tokens in case the input contains any of them.
813
- """
814
-
815
- def __init__(self, *args, **kwargs):
816
- super().__init__(*args, **kwargs)
817
-
818
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
819
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
820
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
821
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
822
-
823
- def forward(
824
- self,
825
- hidden_states: torch.Tensor,
826
- attention_mask: Optional[torch.LongTensor] = None,
827
- position_ids: Optional[torch.LongTensor] = None,
828
- past_key_value: Optional[Cache] = None,
829
- output_attentions: bool = False,
830
- use_cache: bool = False,
831
- **kwargs,
832
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
833
- # DeepseekV3FlashAttention2 attention does not support output_attentions
834
- if "padding_mask" in kwargs:
835
- warnings.warn(
836
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
837
- )
838
-
839
- # overwrite attention_mask with padding_mask
840
- attention_mask = kwargs.pop("padding_mask")
841
-
842
- output_attentions = False
843
-
844
- bsz, q_len, _ = hidden_states.size()
845
-
846
- if self.q_lora_rank is None:
847
- q = self.q_proj(hidden_states)
848
- else:
849
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
850
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
851
- q_nope, q_pe = torch.split(
852
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
853
- )
854
-
855
- # Flash attention requires the input to have the shape
856
- # batch_size x seq_length x head_dim x hidden_dim
857
- # therefore we just need to keep the original shape
858
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
859
- compressed_kv, k_pe = torch.split(
860
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
861
- )
862
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
863
- kv = (
864
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
865
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
866
- .transpose(1, 2)
867
- )
868
-
869
- k_nope, value_states = torch.split(
870
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
871
- )
872
- kv_seq_len = value_states.shape[-2]
873
-
874
- kv_seq_len = value_states.shape[-2]
875
- if past_key_value is not None:
876
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
877
-
878
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
879
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
880
-
881
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
882
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
883
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
884
-
885
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
886
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
887
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
888
-
889
- if self.q_head_dim != self.v_head_dim:
890
- value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
891
-
892
- if past_key_value is not None:
893
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
894
- key_states, value_states = past_key_value.update(
895
- key_states, value_states, self.layer_idx, cache_kwargs
896
- )
897
-
898
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
899
- # to be able to avoid many of these transpose/reshape/view.
900
- query_states = query_states.transpose(1, 2)
901
- key_states = key_states.transpose(1, 2)
902
- value_states = value_states.transpose(1, 2)
903
-
904
- dropout_rate = self.attention_dropout if self.training else 0.0
905
-
906
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
907
- # therefore the input hidden states gets silently casted in float32. Hence, we need
908
- # cast them back in the correct dtype just to be sure everything works as expected.
909
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
910
- # in fp32. (DeepseekV3RMSNorm handles it correctly)
911
-
912
- input_dtype = query_states.dtype
913
- if input_dtype == torch.float32:
914
- # Handle the case where the model is quantized
915
- if hasattr(self.config, "_pre_quantization_dtype"):
916
- target_dtype = self.config._pre_quantization_dtype
917
- elif torch.is_autocast_enabled():
918
- target_dtype = torch.get_autocast_gpu_dtype()
919
- else:
920
- target_dtype = (
921
- self.q_proj.weight.dtype
922
- if self.q_lora_rank is None
923
- else self.q_a_proj.weight.dtype
924
- )
925
-
926
- logger.warning_once(
927
- f"The input hidden states seems to be silently casted in float32, this might be related to"
928
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
929
- f" {target_dtype}."
930
- )
931
-
932
- query_states = query_states.to(target_dtype)
933
- key_states = key_states.to(target_dtype)
934
- value_states = value_states.to(target_dtype)
935
-
936
- attn_output = self._flash_attention_forward(
937
- query_states,
938
- key_states,
939
- value_states,
940
- attention_mask,
941
- q_len,
942
- dropout=dropout_rate,
943
- softmax_scale=self.softmax_scale,
944
- )
945
- if self.q_head_dim != self.v_head_dim:
946
- attn_output = attn_output[:, :, :, : self.v_head_dim]
947
-
948
- attn_output = attn_output.reshape(
949
- bsz, q_len, self.num_heads * self.v_head_dim
950
- ).contiguous()
951
- attn_output = self.o_proj(attn_output)
952
-
953
- if not output_attentions:
954
- attn_weights = None
955
-
956
- return attn_output, attn_weights, past_key_value
957
-
958
- def _flash_attention_forward(
959
- self,
960
- query_states,
961
- key_states,
962
- value_states,
963
- attention_mask,
964
- query_length,
965
- dropout=0.0,
966
- softmax_scale=None,
967
- ):
968
- """
969
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
970
- first unpad the input, then computes the attention scores and pad the final attention scores.
971
-
972
- Args:
973
- query_states (`torch.Tensor`):
974
- Input query states to be passed to Flash Attention API
975
- key_states (`torch.Tensor`):
976
- Input key states to be passed to Flash Attention API
977
- value_states (`torch.Tensor`):
978
- Input value states to be passed to Flash Attention API
979
- attention_mask (`torch.Tensor`):
980
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
981
- position of padding tokens and 1 for the position of non-padding tokens.
982
- dropout (`int`, *optional*):
983
- Attention dropout
984
- softmax_scale (`float`, *optional*):
985
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
986
- """
987
- if not self._flash_attn_uses_top_left_mask:
988
- causal = self.is_causal
989
- else:
990
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
991
- causal = self.is_causal and query_length != 1
992
-
993
- # Contains at least one padding token in the sequence
994
- if attention_mask is not None:
995
- batch_size = query_states.shape[0]
996
- (
997
- query_states,
998
- key_states,
999
- value_states,
1000
- indices_q,
1001
- cu_seq_lens,
1002
- max_seq_lens,
1003
- ) = self._upad_input(
1004
- query_states, key_states, value_states, attention_mask, query_length
1005
- )
1006
-
1007
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1008
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1009
-
1010
- attn_output_unpad = flash_attn_varlen_func(
1011
- query_states,
1012
- key_states,
1013
- value_states,
1014
- cu_seqlens_q=cu_seqlens_q,
1015
- cu_seqlens_k=cu_seqlens_k,
1016
- max_seqlen_q=max_seqlen_in_batch_q,
1017
- max_seqlen_k=max_seqlen_in_batch_k,
1018
- dropout_p=dropout,
1019
- softmax_scale=softmax_scale,
1020
- causal=causal,
1021
- )
1022
-
1023
- attn_output = pad_input(
1024
- attn_output_unpad, indices_q, batch_size, query_length
1025
- )
1026
- else:
1027
- attn_output = flash_attn_func(
1028
- query_states,
1029
- key_states,
1030
- value_states,
1031
- dropout,
1032
- softmax_scale=softmax_scale,
1033
- causal=causal,
1034
- )
1035
-
1036
- return attn_output
1037
-
1038
- def _upad_input(
1039
- self, query_layer, key_layer, value_layer, attention_mask, query_length
1040
- ):
1041
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1042
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1043
-
1044
- key_layer = index_first_axis(
1045
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1046
- indices_k,
1047
- )
1048
- value_layer = index_first_axis(
1049
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1050
- indices_k,
1051
- )
1052
- if query_length == kv_seq_len:
1053
- query_layer = index_first_axis(
1054
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1055
- indices_k,
1056
- )
1057
- cu_seqlens_q = cu_seqlens_k
1058
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
1059
- indices_q = indices_k
1060
- elif query_length == 1:
1061
- max_seqlen_in_batch_q = 1
1062
- cu_seqlens_q = torch.arange(
1063
- batch_size + 1, dtype=torch.int32, device=query_layer.device
1064
- ) # There is a memcpy here, that is very bad.
1065
- indices_q = cu_seqlens_q[:-1]
1066
- query_layer = query_layer.squeeze(1)
1067
- else:
1068
- # The -q_len: slice assumes left padding.
1069
- attention_mask = attention_mask[:, -query_length:]
1070
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1071
- query_layer, attention_mask
1072
- )
1073
-
1074
- return (
1075
- query_layer,
1076
- key_layer,
1077
- value_layer,
1078
- indices_q,
1079
- (cu_seqlens_q, cu_seqlens_k),
1080
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1081
- )
1082
-
1083
-
1084
- ATTENTION_CLASSES = {
1085
- "eager": DeepseekV3Attention,
1086
- "flash_attention_2": DeepseekV3FlashAttention2,
1087
- }
1088
-
1089
-
1090
- class DeepseekV3DecoderLayer(nn.Module):
1091
- def __init__(self, config: DeepseekV3Config, layer_idx: int):
1092
- super().__init__()
1093
- self.hidden_size = config.hidden_size
1094
-
1095
- self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1096
- config=config, layer_idx=layer_idx
1097
- )
1098
-
1099
- self.mlp = (
1100
- DeepseekV3MoE(config)
1101
- if (
1102
- config.n_routed_experts is not None
1103
- and layer_idx >= config.first_k_dense_replace
1104
- and layer_idx % config.moe_layer_freq == 0
1105
- )
1106
- else DeepseekV3MLP(config)
1107
- )
1108
- self.input_layernorm = DeepseekV3RMSNorm(
1109
- config.hidden_size, eps=config.rms_norm_eps
1110
- )
1111
- self.post_attention_layernorm = DeepseekV3RMSNorm(
1112
- config.hidden_size, eps=config.rms_norm_eps
1113
- )
1114
-
1115
- def forward(
1116
- self,
1117
- hidden_states: torch.Tensor,
1118
- attention_mask: Optional[torch.Tensor] = None,
1119
- position_ids: Optional[torch.LongTensor] = None,
1120
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
1121
- output_attentions: Optional[bool] = False,
1122
- use_cache: Optional[bool] = False,
1123
- **kwargs,
1124
- ) -> Tuple[
1125
- torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1126
- ]:
1127
- """
1128
- Args:
1129
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1130
- attention_mask (`torch.FloatTensor`, *optional*):
1131
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1132
- query_sequence_length, key_sequence_length)` if default attention is used.
1133
- output_attentions (`bool`, *optional*):
1134
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1135
- returned tensors for more detail.
1136
- use_cache (`bool`, *optional*):
1137
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1138
- (see `past_key_values`).
1139
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1140
- """
1141
- if "padding_mask" in kwargs:
1142
- warnings.warn(
1143
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1144
- )
1145
- residual = hidden_states
1146
-
1147
- hidden_states = self.input_layernorm(hidden_states)
1148
-
1149
- # Self Attention
1150
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
1151
- hidden_states=hidden_states,
1152
- attention_mask=attention_mask,
1153
- position_ids=position_ids,
1154
- past_key_value=past_key_value,
1155
- output_attentions=output_attentions,
1156
- use_cache=use_cache,
1157
- **kwargs,
1158
- )
1159
- hidden_states = residual + hidden_states
1160
-
1161
- # Fully Connected
1162
- residual = hidden_states
1163
- hidden_states = self.post_attention_layernorm(hidden_states)
1164
- hidden_states = self.mlp(hidden_states)
1165
- hidden_states = residual + hidden_states
1166
-
1167
- outputs = (hidden_states,)
1168
-
1169
- if output_attentions:
1170
- outputs += (self_attn_weights,)
1171
-
1172
- if use_cache:
1173
- outputs += (present_key_value,)
1174
-
1175
- return outputs
1176
-
1177
-
1178
- DeepseekV3_START_DOCSTRING = r"""
1179
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1180
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1181
- etc.)
1182
-
1183
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1184
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1185
- and behavior.
1186
-
1187
- Parameters:
1188
- config ([`DeepseekV3Config`]):
1189
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1190
- load the weights associated with the model, only the configuration. Check out the
1191
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1192
- """
1193
-
1194
-
1195
- @add_start_docstrings(
1196
- "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1197
- DeepseekV3_START_DOCSTRING,
1198
- )
1199
- class DeepseekV3PreTrainedModel(PreTrainedModel):
1200
- config_class = DeepseekV3Config
1201
- base_model_prefix = "model"
1202
- supports_gradient_checkpointing = True
1203
- _no_split_modules = ["DeepseekV3DecoderLayer"]
1204
- _skip_keys_device_placement = "past_key_values"
1205
- _supports_flash_attn_2 = True
1206
- _supports_cache_class = True
1207
-
1208
- def _init_weights(self, module):
1209
- std = self.config.initializer_range
1210
- if isinstance(module, nn.Linear):
1211
- module.weight.data.normal_(mean=0.0, std=std)
1212
- if module.bias is not None:
1213
- module.bias.data.zero_()
1214
- elif isinstance(module, nn.Embedding):
1215
- module.weight.data.normal_(mean=0.0, std=std)
1216
- if module.padding_idx is not None:
1217
- module.weight.data[module.padding_idx].zero_()
1218
-
1219
-
1220
- DeepseekV3_INPUTS_DOCSTRING = r"""
1221
- Args:
1222
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1223
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1224
- it.
1225
-
1226
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1227
- [`PreTrainedTokenizer.__call__`] for details.
1228
-
1229
- [What are input IDs?](../glossary#input-ids)
1230
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1231
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1232
-
1233
- - 1 for tokens that are **not masked**,
1234
- - 0 for tokens that are **masked**.
1235
-
1236
- [What are attention masks?](../glossary#attention-mask)
1237
-
1238
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1239
- [`PreTrainedTokenizer.__call__`] for details.
1240
-
1241
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1242
- `past_key_values`).
1243
-
1244
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1245
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1246
- information on the default strategy.
1247
-
1248
- - 1 indicates the head is **not masked**,
1249
- - 0 indicates the head is **masked**.
1250
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1251
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1252
- config.n_positions - 1]`.
1253
-
1254
- [What are position IDs?](../glossary#position-ids)
1255
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1256
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1257
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1258
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1259
-
1260
- Two formats are allowed:
1261
- - a [`~cache_utils.Cache`] instance;
1262
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1263
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1264
- cache format.
1265
-
1266
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1267
- legacy cache format will be returned.
1268
-
1269
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1270
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1271
- of shape `(batch_size, sequence_length)`.
1272
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1273
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1274
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1275
- model's internal embedding lookup matrix.
1276
- use_cache (`bool`, *optional*):
1277
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1278
- `past_key_values`).
1279
- output_attentions (`bool`, *optional*):
1280
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1281
- tensors for more detail.
1282
- output_hidden_states (`bool`, *optional*):
1283
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1284
- more detail.
1285
- return_dict (`bool`, *optional*):
1286
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1287
- """
1288
-
1289
-
1290
- @add_start_docstrings(
1291
- "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1292
- DeepseekV3_START_DOCSTRING,
1293
- )
1294
- class DeepseekV3Model(DeepseekV3PreTrainedModel):
1295
- """
1296
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
1297
-
1298
- Args:
1299
- config: DeepseekV3Config
1300
- """
1301
-
1302
- def __init__(self, config: DeepseekV3Config):
1303
- super().__init__(config)
1304
- self.padding_idx = config.pad_token_id
1305
- self.vocab_size = config.vocab_size
1306
-
1307
- self.embed_tokens = nn.Embedding(
1308
- config.vocab_size, config.hidden_size, self.padding_idx
1309
- )
1310
- self.layers = nn.ModuleList(
1311
- [
1312
- DeepseekV3DecoderLayer(config, layer_idx)
1313
- for layer_idx in range(config.num_hidden_layers)
1314
- ]
1315
- )
1316
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1317
- self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1318
-
1319
- self.gradient_checkpointing = False
1320
- # Initialize weights and apply final processing
1321
- self.post_init()
1322
-
1323
- def get_input_embeddings(self):
1324
- return self.embed_tokens
1325
-
1326
- def set_input_embeddings(self, value):
1327
- self.embed_tokens = value
1328
-
1329
- @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1330
- def forward(
1331
- self,
1332
- input_ids: torch.LongTensor = None,
1333
- attention_mask: Optional[torch.Tensor] = None,
1334
- position_ids: Optional[torch.LongTensor] = None,
1335
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1336
- inputs_embeds: Optional[torch.FloatTensor] = None,
1337
- use_cache: Optional[bool] = None,
1338
- output_attentions: Optional[bool] = None,
1339
- output_hidden_states: Optional[bool] = None,
1340
- return_dict: Optional[bool] = None,
1341
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1342
- output_attentions = (
1343
- output_attentions
1344
- if output_attentions is not None
1345
- else self.config.output_attentions
1346
- )
1347
- output_hidden_states = (
1348
- output_hidden_states
1349
- if output_hidden_states is not None
1350
- else self.config.output_hidden_states
1351
- )
1352
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1353
-
1354
- return_dict = (
1355
- return_dict if return_dict is not None else self.config.use_return_dict
1356
- )
1357
-
1358
- # retrieve input_ids and inputs_embeds
1359
- if input_ids is not None and inputs_embeds is not None:
1360
- raise ValueError(
1361
- "You cannot specify both input_ids and inputs_embeds at the same time"
1362
- )
1363
- elif input_ids is not None:
1364
- batch_size, seq_length = input_ids.shape[:2]
1365
- elif inputs_embeds is not None:
1366
- batch_size, seq_length = inputs_embeds.shape[:2]
1367
- else:
1368
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1369
-
1370
- past_key_values_length = 0
1371
- if use_cache:
1372
- use_legacy_cache = not isinstance(past_key_values, Cache)
1373
- if use_legacy_cache:
1374
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1375
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1376
-
1377
- if position_ids is None:
1378
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1379
- position_ids = torch.arange(
1380
- past_key_values_length,
1381
- seq_length + past_key_values_length,
1382
- dtype=torch.long,
1383
- device=device,
1384
- )
1385
- position_ids = position_ids.unsqueeze(0)
1386
-
1387
- if inputs_embeds is None:
1388
- inputs_embeds = self.embed_tokens(input_ids)
1389
-
1390
- if self._use_flash_attention_2:
1391
- # 2d mask is passed through the layers
1392
- attention_mask = (
1393
- attention_mask
1394
- if (attention_mask is not None and 0 in attention_mask)
1395
- else None
1396
- )
1397
- else:
1398
- # 4d mask is passed through the layers
1399
- attention_mask = _prepare_4d_causal_attention_mask(
1400
- attention_mask,
1401
- (batch_size, seq_length),
1402
- inputs_embeds,
1403
- past_key_values_length,
1404
- )
1405
-
1406
- # embed positions
1407
- hidden_states = inputs_embeds
1408
-
1409
- # decoder layers
1410
- all_hidden_states = () if output_hidden_states else None
1411
- all_self_attns = () if output_attentions else None
1412
- next_decoder_cache = None
1413
-
1414
- for decoder_layer in self.layers:
1415
- if output_hidden_states:
1416
- all_hidden_states += (hidden_states,)
1417
-
1418
- layer_outputs = decoder_layer(
1419
- hidden_states,
1420
- attention_mask=attention_mask,
1421
- position_ids=position_ids,
1422
- past_key_value=past_key_values,
1423
- output_attentions=output_attentions,
1424
- use_cache=use_cache,
1425
- )
1426
-
1427
- hidden_states = layer_outputs[0]
1428
-
1429
- if use_cache:
1430
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1431
-
1432
- if output_attentions:
1433
- all_self_attns += (layer_outputs[1],)
1434
-
1435
- hidden_states = self.norm(hidden_states)
1436
-
1437
- # add hidden states from the last decoder layer
1438
- if output_hidden_states:
1439
- all_hidden_states += (hidden_states,)
1440
-
1441
- next_cache = None
1442
- if use_cache:
1443
- next_cache = (
1444
- next_decoder_cache.to_legacy_cache()
1445
- if use_legacy_cache
1446
- else next_decoder_cache
1447
- )
1448
- if not return_dict:
1449
- return tuple(
1450
- v
1451
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1452
- if v is not None
1453
- )
1454
- return BaseModelOutputWithPast(
1455
- last_hidden_state=hidden_states,
1456
- past_key_values=next_cache,
1457
- hidden_states=all_hidden_states,
1458
- attentions=all_self_attns,
1459
- )
1460
-
1461
-
1462
- class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
1463
- _tied_weights_keys = ["lm_head.weight"]
1464
-
1465
- def __init__(self, config):
1466
- super().__init__(config)
1467
- self.model = DeepseekV3Model(config)
1468
- self.vocab_size = config.vocab_size
1469
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1470
-
1471
- # Initialize weights and apply final processing
1472
- self.post_init()
1473
-
1474
- def get_input_embeddings(self):
1475
- return self.model.embed_tokens
1476
-
1477
- def set_input_embeddings(self, value):
1478
- self.model.embed_tokens = value
1479
-
1480
- def get_output_embeddings(self):
1481
- return self.lm_head
1482
-
1483
- def set_output_embeddings(self, new_embeddings):
1484
- self.lm_head = new_embeddings
1485
-
1486
- def set_decoder(self, decoder):
1487
- self.model = decoder
1488
-
1489
- def get_decoder(self):
1490
- return self.model
1491
-
1492
- @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1493
- @replace_return_docstrings(
1494
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1495
- )
1496
- def forward(
1497
- self,
1498
- input_ids: torch.LongTensor = None,
1499
- attention_mask: Optional[torch.Tensor] = None,
1500
- position_ids: Optional[torch.LongTensor] = None,
1501
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1502
- inputs_embeds: Optional[torch.FloatTensor] = None,
1503
- labels: Optional[torch.LongTensor] = None,
1504
- use_cache: Optional[bool] = None,
1505
- output_attentions: Optional[bool] = None,
1506
- output_hidden_states: Optional[bool] = None,
1507
- return_dict: Optional[bool] = None,
1508
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1509
- r"""
1510
- Args:
1511
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1512
- Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1513
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1514
- (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1515
-
1516
- Returns:
1517
-
1518
- Example:
1519
-
1520
- ```python
1521
- >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
1522
-
1523
- >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1524
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1525
-
1526
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1527
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1528
-
1529
- >>> # Generate
1530
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1531
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1532
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1533
- ```"""
1534
- output_attentions = (
1535
- output_attentions
1536
- if output_attentions is not None
1537
- else self.config.output_attentions
1538
- )
1539
- output_hidden_states = (
1540
- output_hidden_states
1541
- if output_hidden_states is not None
1542
- else self.config.output_hidden_states
1543
- )
1544
- return_dict = (
1545
- return_dict if return_dict is not None else self.config.use_return_dict
1546
- )
1547
-
1548
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1549
- outputs = self.model(
1550
- input_ids=input_ids,
1551
- attention_mask=attention_mask,
1552
- position_ids=position_ids,
1553
- past_key_values=past_key_values,
1554
- inputs_embeds=inputs_embeds,
1555
- use_cache=use_cache,
1556
- output_attentions=output_attentions,
1557
- output_hidden_states=output_hidden_states,
1558
- return_dict=return_dict,
1559
- )
1560
-
1561
- hidden_states = outputs[0]
1562
- logits = self.lm_head(hidden_states)
1563
- logits = logits.float()
1564
-
1565
- loss = None
1566
- if labels is not None:
1567
- # Shift so that tokens < n predict n
1568
- shift_logits = logits[..., :-1, :].contiguous()
1569
- shift_labels = labels[..., 1:].contiguous()
1570
- # Flatten the tokens
1571
- loss_fct = CrossEntropyLoss()
1572
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1573
- shift_labels = shift_labels.view(-1)
1574
- # Enable model parallelism
1575
- shift_labels = shift_labels.to(shift_logits.device)
1576
- loss = loss_fct(shift_logits, shift_labels)
1577
-
1578
- if not return_dict:
1579
- output = (logits,) + outputs[1:]
1580
- return (loss,) + output if loss is not None else output
1581
-
1582
- return CausalLMOutputWithPast(
1583
- loss=loss,
1584
- logits=logits,
1585
- past_key_values=outputs.past_key_values,
1586
- hidden_states=outputs.hidden_states,
1587
- attentions=outputs.attentions,
1588
- )
1589
-
1590
- def prepare_inputs_for_generation(
1591
- self,
1592
- input_ids,
1593
- past_key_values=None,
1594
- attention_mask=None,
1595
- inputs_embeds=None,
1596
- **kwargs,
1597
- ):
1598
- if past_key_values is not None:
1599
- if isinstance(past_key_values, Cache):
1600
- cache_length = past_key_values.get_seq_length()
1601
- past_length = past_key_values.seen_tokens
1602
- max_cache_length = past_key_values.get_max_length()
1603
- else:
1604
- cache_length = past_length = past_key_values[0][0].shape[2]
1605
- max_cache_length = None
1606
-
1607
- # Keep only the unprocessed tokens:
1608
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1609
- # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1610
- # input)
1611
- if (
1612
- attention_mask is not None
1613
- and attention_mask.shape[1] > input_ids.shape[1]
1614
- ):
1615
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1616
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1617
- # input_ids based on the past_length.
1618
- elif past_length < input_ids.shape[1]:
1619
- input_ids = input_ids[:, past_length:]
1620
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1621
-
1622
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1623
- if (
1624
- max_cache_length is not None
1625
- and attention_mask is not None
1626
- and cache_length + input_ids.shape[1] > max_cache_length
1627
- ):
1628
- attention_mask = attention_mask[:, -max_cache_length:]
1629
-
1630
- position_ids = kwargs.get("position_ids", None)
1631
- if attention_mask is not None and position_ids is None:
1632
- # create position_ids on the fly for batch generation
1633
- position_ids = attention_mask.long().cumsum(-1) - 1
1634
- position_ids.masked_fill_(attention_mask == 0, 1)
1635
- if past_key_values:
1636
- position_ids = position_ids[:, -input_ids.shape[1] :]
1637
-
1638
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1639
- if inputs_embeds is not None and past_key_values is None:
1640
- model_inputs = {"inputs_embeds": inputs_embeds}
1641
- else:
1642
- model_inputs = {"input_ids": input_ids}
1643
-
1644
- model_inputs.update(
1645
- {
1646
- "position_ids": position_ids,
1647
- "past_key_values": past_key_values,
1648
- "use_cache": kwargs.get("use_cache"),
1649
- "attention_mask": attention_mask,
1650
- }
1651
- )
1652
- return model_inputs
1653
-
1654
- @staticmethod
1655
- def _reorder_cache(past_key_values, beam_idx):
1656
- reordered_past = ()
1657
- for layer_past in past_key_values:
1658
- reordered_past += (
1659
- tuple(
1660
- past_state.index_select(0, beam_idx.to(past_state.device))
1661
- for past_state in layer_past
1662
- ),
1663
- )
1664
- return reordered_past
1665
-
1666
-
1667
- @add_start_docstrings(
1668
- """
1669
- The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
1670
-
1671
- [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1672
- (e.g. GPT-2) do.
1673
-
1674
- Since it does classification on the last token, it requires to know the position of the last token. If a
1675
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1676
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1677
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1678
- each row of the batch).
1679
- """,
1680
- DeepseekV3_START_DOCSTRING,
1681
- )
1682
- class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
1683
- def __init__(self, config):
1684
- super().__init__(config)
1685
- self.num_labels = config.num_labels
1686
- self.model = DeepseekV3Model(config)
1687
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1688
-
1689
- # Initialize weights and apply final processing
1690
- self.post_init()
1691
-
1692
- def get_input_embeddings(self):
1693
- return self.model.embed_tokens
1694
-
1695
- def set_input_embeddings(self, value):
1696
- self.model.embed_tokens = value
1697
-
1698
- @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1699
- def forward(
1700
- self,
1701
- input_ids: torch.LongTensor = None,
1702
- attention_mask: Optional[torch.Tensor] = None,
1703
- position_ids: Optional[torch.LongTensor] = None,
1704
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1705
- inputs_embeds: Optional[torch.FloatTensor] = None,
1706
- labels: Optional[torch.LongTensor] = None,
1707
- use_cache: Optional[bool] = None,
1708
- output_attentions: Optional[bool] = None,
1709
- output_hidden_states: Optional[bool] = None,
1710
- return_dict: Optional[bool] = None,
1711
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1712
- r"""
1713
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1714
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1715
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1716
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1717
- """
1718
- return_dict = (
1719
- return_dict if return_dict is not None else self.config.use_return_dict
1720
- )
1721
-
1722
- transformer_outputs = self.model(
1723
- input_ids,
1724
- attention_mask=attention_mask,
1725
- position_ids=position_ids,
1726
- past_key_values=past_key_values,
1727
- inputs_embeds=inputs_embeds,
1728
- use_cache=use_cache,
1729
- output_attentions=output_attentions,
1730
- output_hidden_states=output_hidden_states,
1731
- return_dict=return_dict,
1732
- )
1733
- hidden_states = transformer_outputs[0]
1734
- logits = self.score(hidden_states)
1735
-
1736
- if input_ids is not None:
1737
- batch_size = input_ids.shape[0]
1738
- else:
1739
- batch_size = inputs_embeds.shape[0]
1740
-
1741
- if self.config.pad_token_id is None and batch_size != 1:
1742
- raise ValueError(
1743
- "Cannot handle batch sizes > 1 if no padding token is defined."
1744
- )
1745
- if self.config.pad_token_id is None:
1746
- sequence_lengths = -1
1747
- else:
1748
- if input_ids is not None:
1749
- sequence_lengths = (
1750
- torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1751
- ).to(logits.device)
1752
- else:
1753
- sequence_lengths = -1
1754
-
1755
- pooled_logits = logits[
1756
- torch.arange(batch_size, device=logits.device), sequence_lengths
1757
- ]
1758
-
1759
- loss = None
1760
- if labels is not None:
1761
- labels = labels.to(logits.device)
1762
- if self.config.problem_type is None:
1763
- if self.num_labels == 1:
1764
- self.config.problem_type = "regression"
1765
- elif self.num_labels > 1 and (
1766
- labels.dtype == torch.long or labels.dtype == torch.int
1767
- ):
1768
- self.config.problem_type = "single_label_classification"
1769
- else:
1770
- self.config.problem_type = "multi_label_classification"
1771
-
1772
- if self.config.problem_type == "regression":
1773
- loss_fct = MSELoss()
1774
- if self.num_labels == 1:
1775
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1776
- else:
1777
- loss = loss_fct(pooled_logits, labels)
1778
- elif self.config.problem_type == "single_label_classification":
1779
- loss_fct = CrossEntropyLoss()
1780
- loss = loss_fct(
1781
- pooled_logits.view(-1, self.num_labels), labels.view(-1)
1782
- )
1783
- elif self.config.problem_type == "multi_label_classification":
1784
- loss_fct = BCEWithLogitsLoss()
1785
- loss = loss_fct(pooled_logits, labels)
1786
- if not return_dict:
1787
- output = (pooled_logits,) + transformer_outputs[1:]
1788
- return ((loss,) + output) if loss is not None else output
1789
-
1790
- return SequenceClassifierOutputWithPast(
1791
- loss=loss,
1792
- logits=pooled_logits,
1793
- past_key_values=transformer_outputs.past_key_values,
1794
- hidden_states=transformer_outputs.hidden_states,
1795
- attentions=transformer_outputs.attentions,
1796
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
special_tokens_map.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<|begin▁of▁sentence|>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "<|end▁of▁sentence|>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "<|end▁of▁sentence|>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json DELETED
The diff for this file is too large to render. See raw diff