|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** hzhn |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# Instruction Tuning |
|
|
|
The models have been fine-tuned on the following datasets. |
|
|
|
| Language | Dataset | description | |
|
|:---|:---|:---| |
|
|Japanese|[ichikara-instruction-003-001-1.json](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)| A manually constructed instruction dataset | |
|
|
|
データセット作成チーム: |
|
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) |
|
|
|
|
|
# Usage |
|
|
|
以下はElyza-tasks-100-TV_0.jsonlの回答のためのコードです。 |
|
|
|
```python |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
TrainingArguments, |
|
logging, |
|
) |
|
from peft import ( |
|
LoraConfig, |
|
PeftModel, |
|
get_peft_model, |
|
) |
|
import os, torch, gc |
|
from datasets import load_dataset |
|
import bitsandbytes as bnb |
|
from trl import SFTTrainer |
|
``` |
|
|
|
```python |
|
# Hugging Face Token |
|
HF_TOKEN = "your_token" |
|
``` |
|
|
|
```python |
|
base_model_id = "llm-jp/llm-jp-3-13b" |
|
new_model_id = "llm-jp-3-13b-it_lora" |
|
``` |
|
|
|
```python |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) |
|
``` |
|
|
|
```python |
|
def find_all_linear_names(model): |
|
cls = bnb.nn.Linear4bit # 4bit量子化線形層クラスを指定 |
|
lora_module_names = set() # ここに取得した線形層を保持します。 |
|
|
|
# モデル内の全てのモジュールを探索します |
|
for name, module in model.named_modules(): |
|
if isinstance(module, cls): # モジュールが4bit量子化線形層の場合 |
|
names = name.split('.') # モジュールの名前を分割 (ネストされてる際などに対処) |
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) # 最下層の名前をlora_module_namesに追加 |
|
|
|
# 'lm_head' は16ビット演算の際に除外する必要があるため、lora_module_namesから削除 |
|
if 'lm_head' in lora_module_names: |
|
lora_module_names.remove('lm_head') |
|
|
|
return list(lora_module_names) # lora_module_namesをリストに変換して返します。 |
|
|
|
modules = find_all_linear_names(model) |
|
``` |
|
|
|
```python |
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=modules, |
|
) |
|
|
|
model = get_peft_model(model, peft_config) |
|
``` |
|
|
|
```python |
|
dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json") |
|
``` |
|
|
|
```python |
|
# 学習時のプロンプトフォーマットの定義 |
|
prompt = """### 指示 |
|
{} |
|
### 回答 |
|
{}""" |
|
|
|
|
|
""" |
|
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる |
|
""" |
|
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン) |
|
def formatting_prompts_func(examples): |
|
input = examples["text"] # 入力データ |
|
output = examples["output"] # 出力データ |
|
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成 |
|
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す |
|
pass |
|
|
|
# # 各データにフォーマットを適用 |
|
dataset = dataset.map( |
|
formatting_prompts_func, |
|
num_proc= 4, # 並列処理数を指定 |
|
) |
|
``` |
|
|
|
```python |
|
training_arguments = TrainingArguments( |
|
output_dir=new_model_id, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=2, |
|
optim="paged_adamw_32bit", |
|
num_train_epochs=1, |
|
logging_strategy="steps", |
|
logging_steps=10, |
|
warmup_steps=10, |
|
save_steps=100, |
|
save_total_limit = 2, |
|
max_steps = -1, |
|
learning_rate=5e-5, |
|
fp16=False, |
|
bf16=False, |
|
seed = 3407, |
|
group_by_length=True, |
|
report_to="none" |
|
) |
|
``` |
|
|
|
```python |
|
trainer = SFTTrainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
peft_config=peft_config, |
|
max_seq_length= 512, |
|
dataset_text_field="formatted_text", |
|
tokenizer=tokenizer, |
|
args=training_arguments, |
|
packing= False, |
|
) |
|
|
|
model.config.use_cache = False # キャッシュ機能を無効化 |
|
trainer.train() # トレーニングを実行 |
|
``` |
|
|
|
```python |
|
import json |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
``` |
|
|
|
```python |
|
from tqdm import tqdm |
|
|
|
results = [] |
|
for data in tqdm(datasets): |
|
|
|
input = data["input"] |
|
|
|
prompt = f"""### 指示 |
|
{input} |
|
### 回答 |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
attention_mask = torch.ones_like(tokenized_input) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
attention_mask=attention_mask, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "input": input, "output": output}) |
|
``` |
|
|
|
```python |
|
import re |
|
jsonl_id = re.sub(".*/", "", new_model_id) |
|
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters |
|
f.write('\n') |
|
``` |