File size: 1,454 Bytes
452256c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: mit
tags:
- vqvae
- image-generation
- unsupervised-learning
- pytorch
- cifar10
- generative-model
datasets:
- cifar10
library_name: pytorch
model-index:
- name: VQ-VAE-CIFAR10
results: []
---
# VQ-VAE for CIFAR-10
This is a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the CIFAR-10 dataset using PyTorch. It is part of an image augmentation pipeline for generative modeling and unsupervised learning research.
## 🧠 Model Details
- **Model Type**: VQ-VAE
- **Dataset**: CIFAR-10
- **Epochs**: 35
- **Latent Space**: Discrete (quantized vectors)
- **Input Size**: 64×64
- **Reconstruction Loss**: MSE-based
- **Implementation**: Custom PyTorch, 3-layer Conv Encoder/Decoder
- **FID Score**: **71.11**
- **Loss Curve**: [`loss_curve.png`](./loss_curve.png)
> This model was trained to learn a compact representation of CIFAR-10 images via vector quantization and used for downstream data augmentation.
## 📁 Files
- `generator.pt`: Trained VQ-VAE model weights.
- `loss_curve.png`: Visual plot of training loss across 35 epochs.
- `fid_score.json`: Stored Fréchet Inception Distance (FID) evaluation result.
- `fid_real/` and `fid_fake/`: 1000 real and generated samples used for FID computation.
## 📦 How to Use
```python
import torch
from models.vqvae.model import VQVAE
model = VQVAE()
model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
model.eval()
|