|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- Pytorch |
|
- mmsegmentation |
|
- segmentation |
|
- burn scars |
|
- Geospatial |
|
- Foundation model |
|
datasets: |
|
- ibm-nasa-geospatial/hls_burn_scars |
|
metrics: |
|
- accuracy |
|
- IoU |
|
- F1 Score |
|
--- |
|
|
|
### Model and Inputs |
|
The pretrained [Prithvi-100m](https://huggingface.co/ibm-nasa-geospatial/burn-scar-Prithvi-100M) parameter model is used for finetuning over the Burn Scar task on HLS data. |
|
The finetuning expected an input tile of 512x512x6, where 512 is the height and width and 6 is the number of bands. The bands are |
|
1. Blue |
|
2. Green |
|
3. Red |
|
4. Narrow NIR |
|
5. SWIR 1 |
|
6. SWIR 2 |
|
|
|
### Code |
|
Code for Finetuning is available through [github](https://github.com/NASA-IMPACT/hls-foundation-os/tree/main/fine-tuning-examples) |
|
|
|
Configuration used for finetuning is available through [config](https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/fine-tuning-examples/configs/firescars_config.py |
|
) |
|
|
|
To run inference, first install dependencies |
|
|
|
``` |
|
mamba create -n prithvi-burn-scar python=3.10 pycocotools ncurses |
|
mamba activate prithvi-burn-scar |
|
pip install --upgrade pip && \ |
|
pip install -r requirements.txt && \ |
|
mim install mmcv-full==1.5.0 |
|
``` |
|
|
|
#### Instructions for downloading from [HuggingFace datasets](https://huggingface.co/datasets) |
|
|
|
1. Create account on https://huggingface.co/join |
|
2. Install `git` following https://git-scm.com/downloads |
|
3. Install git-lfs with `sudo apt install git-lfs` and `git lfs install` |
|
4. Run the following command to download the HLS datasets. You may need to |
|
enter your HuggingFace username/password to do the `git clone`. |
|
|
|
``` |
|
mkdir -p data |
|
cd data/ |
|
git clone https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars burn_scars |
|
tar -xzvf burn_scars/hls_burn_scars.tar.gz -C ./ |
|
``` |
|
|
|
|
|
With the datasets and the environment, you can now run the inference script. |
|
|
|
``` |
|
python burn_scar_batch_inference_script.py \ |
|
-config burn_scars_Prithvi_100M.py \ |
|
-ckpt burn_scars_Prithvi_100M.pth \ |
|
-input data/burn_scars/validation \ |
|
-output data/burn_scars/inference_output \ |
|
-input_type tif |
|
``` |
|
|
|
### Results |
|
|
|
|
|
|