|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from torch.utils.data import DataLoader |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from fast_transformers.masking import LengthMask |
|
|
|
|
|
from tqdm import tqdm |
|
import pandas as pd |
|
import numpy as np |
|
import random |
|
import os |
|
|
|
|
|
class Trainer: |
|
|
|
def __init__( |
|
self, |
|
model: torch.nn.Module, |
|
train_data: DataLoader, |
|
optimizer: torch.optim.Optimizer, |
|
save_every: int, |
|
save_checkpoint_path: str, |
|
load_checkpoint_path: str, |
|
config, |
|
) -> None: |
|
self.local_rank = int(os.environ["LOCAL_RANK"]) |
|
self.global_rank = int(os.environ["RANK"]) |
|
self.model = model.to(self.local_rank) |
|
self.train_data = train_data |
|
self.optimizer = optimizer |
|
self.save_every = save_every |
|
self.epochs_run = 0 |
|
self.last_batch_idx = -1 |
|
self.save_checkpoint_path = save_checkpoint_path |
|
self.config = config |
|
|
|
if os.path.exists(load_checkpoint_path): |
|
print(f"Loading checkpoint at {load_checkpoint_path}...") |
|
self._load_checkpoint(load_checkpoint_path) |
|
|
|
self.model = DDP(self.model, device_ids=[self.local_rank]) |
|
|
|
def _load_checkpoint(self, checkpoint_path): |
|
opt_dict = None |
|
loc = f"cuda:{self.local_rank}" |
|
ckpt_dict = torch.load(checkpoint_path, map_location=loc) |
|
if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): |
|
opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) |
|
|
|
self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) |
|
if opt_dict is not None: |
|
self.optimizer.load_state_dict(opt_dict["OPTIMIZER_STATE"]) |
|
print('Optimizer states restored!') |
|
|
|
self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 |
|
self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] |
|
|
|
|
|
if 'rng' in ckpt_dict: |
|
rng = ckpt_dict['rng'] |
|
for key, value in rng.items(): |
|
if key =='torch_state': |
|
torch.set_rng_state(value.cpu()) |
|
elif key =='cuda_state': |
|
torch.cuda.set_rng_state(value.cpu()) |
|
elif key =='numpy_state': |
|
np.random.set_state(value) |
|
elif key =='python_state': |
|
random.setstate(value) |
|
else: |
|
print('unrecognized state') |
|
|
|
print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") |
|
|
|
def _save_checkpoint(self, epoch, config, last_idx): |
|
|
|
out_dict = dict() |
|
out_dict['torch_state'] = torch.get_rng_state() |
|
out_dict['cuda_state'] = torch.cuda.get_rng_state() |
|
if np: |
|
out_dict['numpy_state'] = np.random.get_state() |
|
if random: |
|
out_dict['python_state'] = random.getstate() |
|
|
|
|
|
ckpt_dict = { |
|
"MODEL_STATE": self.model.module.state_dict(), |
|
"EPOCHS_RUN": epoch, |
|
"hparams": vars(config), |
|
"last_batch_idx": last_idx, |
|
"rng": out_dict |
|
} |
|
|
|
|
|
opt_dict = { |
|
"OPTIMIZER_STATE": self.optimizer.state_dict(), |
|
} |
|
|
|
if last_idx == -1: |
|
filename = f'{str(self.model.module)}_{epoch}.pt' |
|
else: |
|
filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' |
|
|
|
torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) |
|
torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) |
|
|
|
print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") |
|
|
|
def train(self, max_epochs: int): |
|
for epoch in range(self.epochs_run, max_epochs): |
|
self._run_epoch(epoch) |
|
if self.local_rank == 0: |
|
self._save_checkpoint(epoch, self.config, last_idx=-1) |
|
|
|
def _run_epoch(self, epoch): |
|
print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)} | Last batch: {self.last_batch_idx}") |
|
self.train_data.sampler.set_epoch(epoch) |
|
loss_list = pd.Series() |
|
|
|
for idx, data in enumerate(tqdm(self.train_data)): |
|
|
|
if idx <= self.last_batch_idx: |
|
continue |
|
|
|
|
|
bucket_idx_masked = data[0] |
|
bucket_targets = data[1] |
|
bucket_idx_not_masked = data[2] |
|
loss = self._run_batch(bucket_idx_masked, bucket_targets, bucket_idx_not_masked) |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if self.local_rank == 0: |
|
loss_list = pd.concat([loss_list, pd.Series([loss])], axis=0) |
|
|
|
|
|
if self.local_rank == 0 and idx % self.save_every == 0 and idx != 0: |
|
self._save_checkpoint(epoch, self.config, idx) |
|
|
|
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_{idx}_epoch{epoch}.csv'), index=False) |
|
loss_list = pd.Series() |
|
|
|
self.last_batch_idx = -1 |
|
|
|
if self.local_rank == 0: |
|
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) |
|
|
|
def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): |
|
raise NotImplementedError |
|
|
|
|
|
class TrainerEncoderDecoder(Trainer): |
|
|
|
def __init__( |
|
self, |
|
model: torch.nn.Module, |
|
train_data: DataLoader, |
|
optimizer: torch.optim.Optimizer, |
|
save_every: int, |
|
save_checkpoint_path: str, |
|
load_checkpoint_path: str, |
|
config, |
|
) -> None: |
|
super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) |
|
self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.criterionR = nn.MSELoss() |
|
|
|
self.optimE = self.optimizer[0] |
|
self.optimD = self.optimizer[1] |
|
|
|
self.ngpus_per_node = torch.cuda.device_count() |
|
self.total_batches = len(self.train_data) |
|
self.batch_thresh = int(self.total_batches - (self.total_batches * 0.05 * self.ngpus_per_node)) |
|
print('batch_thresh:', self.batch_thresh) |
|
|
|
def _load_checkpoint(self, checkpoint_path): |
|
opt_dict = None |
|
loc = f"cuda:{self.local_rank}" |
|
ckpt_dict = torch.load(checkpoint_path, map_location=loc) |
|
if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): |
|
opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) |
|
|
|
self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) |
|
if opt_dict is not None: |
|
self.optimizer[0].load_state_dict(opt_dict["OPTIMIZER_STATE_ENCODER"]) |
|
self.optimizer[1].load_state_dict(opt_dict["OPTIMIZER_STATE_DECODER"]) |
|
print('Optimizer states restored!') |
|
|
|
self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 |
|
self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] |
|
|
|
|
|
if 'rng' in ckpt_dict: |
|
rng = ckpt_dict['rng'] |
|
for key, value in rng.items(): |
|
if key =='torch_state': |
|
torch.set_rng_state(value.cpu()) |
|
elif key =='cuda_state': |
|
torch.cuda.set_rng_state(value.cpu()) |
|
elif key =='numpy_state': |
|
np.random.set_state(value) |
|
elif key =='python_state': |
|
random.setstate(value) |
|
else: |
|
print('unrecognized state') |
|
|
|
print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") |
|
|
|
def _save_checkpoint(self, epoch, config, last_idx): |
|
|
|
out_dict = dict() |
|
out_dict['torch_state'] = torch.get_rng_state() |
|
out_dict['cuda_state'] = torch.cuda.get_rng_state() |
|
if np: |
|
out_dict['numpy_state'] = np.random.get_state() |
|
if random: |
|
out_dict['python_state'] = random.getstate() |
|
|
|
|
|
ckpt_dict = { |
|
"MODEL_STATE": self.model.module.state_dict(), |
|
"EPOCHS_RUN": epoch, |
|
"hparams": vars(config), |
|
"last_batch_idx": last_idx, |
|
"rng": out_dict |
|
} |
|
|
|
|
|
opt_dict = { |
|
"OPTIMIZER_STATE_ENCODER": self.optimizer[0].state_dict(), |
|
"OPTIMIZER_STATE_DECODER": self.optimizer[1].state_dict(), |
|
} |
|
|
|
if last_idx == -1: |
|
filename = f'{str(self.model.module)}_{epoch}.pt' |
|
else: |
|
filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' |
|
|
|
torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) |
|
torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) |
|
|
|
print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") |
|
|
|
def _run_epoch(self, epoch): |
|
print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)}") |
|
self.train_data.sampler.set_epoch(epoch) |
|
loss_list = pd.DataFrame() |
|
|
|
for idx, data in enumerate(tqdm(self.train_data)): |
|
bucket_idx_masked = data[0] |
|
bucket_targets = data[1] |
|
bucket_idx_not_masked = data[2] |
|
lossE, lossD = self._run_batch(idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked) |
|
torch.cuda.empty_cache() |
|
|
|
if self.local_rank == 0: |
|
df = pd.DataFrame({ |
|
'lossE': [lossE.cpu().item()], |
|
'lossD': [lossD.cpu().item()], |
|
}) |
|
loss_list = pd.concat([loss_list, df], axis=0) |
|
|
|
if self.local_rank == 0: |
|
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) |
|
|
|
def custom(self, module): |
|
def custom_forward(*inputs): |
|
inputs = module(inputs[0]) |
|
return inputs |
|
return custom_forward |
|
|
|
def _run_batch(self, batch_idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): |
|
self.optimE.zero_grad(set_to_none=True) |
|
self.optimD.zero_grad(set_to_none=True) |
|
|
|
can_train_encoder = (batch_idx + 1) <= self.batch_thresh |
|
can_train_decoder = (batch_idx + 1) > self.batch_thresh |
|
|
|
padding_idx = 2 |
|
errorE = torch.zeros(1).to(self.local_rank) |
|
errorD = torch.zeros(1).to(self.local_rank) |
|
errorE_tmp = .0 |
|
errorD_tmp = .0 |
|
|
|
for chunk in range(len(bucket_idx_masked)): |
|
idx_masked = bucket_idx_masked[chunk].to(self.local_rank) |
|
targets = bucket_targets[chunk].to(self.local_rank) |
|
idx_not_masked = bucket_idx_not_masked[chunk] |
|
idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) |
|
idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) |
|
mask = (idx_masked != padding_idx) |
|
|
|
|
|
|
|
|
|
if can_train_encoder: |
|
for param in self.model.module.encoder.parameters(): |
|
param.requires_grad = True |
|
for param in self.model.module.decoder.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
x = self.model.module.encoder.tok_emb(idx_masked) |
|
x = self.model.module.encoder.drop(x) |
|
x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x) |
|
logits = self.model.module.encoder.lang_model(x) |
|
|
|
|
|
logits = logits.view(-1, logits.size(-1)) |
|
targets = targets.view(-1) |
|
errorE_tmp = self.criterionC(logits, targets) / len(bucket_idx_masked) |
|
|
|
if chunk < len(bucket_idx_masked)-1: |
|
errorE_tmp.backward() |
|
errorE += errorE_tmp.detach() |
|
else: |
|
errorE += errorE_tmp |
|
|
|
|
|
|
|
|
|
|
|
if can_train_decoder: |
|
for param in self.model.module.encoder.parameters(): |
|
param.requires_grad = False |
|
for param in self.model.module.decoder.parameters(): |
|
param.requires_grad = True |
|
|
|
self.model.module.encoder.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
true_set, true_cte = self.model.module.encoder(idx_masked, mask=mask, inference=True) |
|
|
|
|
|
input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() |
|
mask_embeddings = (true_cte * input_mask_expanded) |
|
true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) |
|
true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) |
|
|
|
|
|
pred_set, pred_ids = self.model.module.decoder(true_cte) |
|
|
|
|
|
pred_ids = pred_ids.view(-1, pred_ids.size(-1)) |
|
true_ids = idx_not_masked.view(-1) |
|
|
|
error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) |
|
error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) |
|
errorD_tmp = error_ids + error_set |
|
|
|
if chunk < len(bucket_idx_masked)-1: |
|
errorD_tmp.backward() |
|
errorD += errorD_tmp.detach() |
|
else: |
|
errorD += errorD_tmp |
|
|
|
if can_train_decoder: |
|
errorD.backward() |
|
self.optimD.step() |
|
elif can_train_encoder: |
|
errorE.backward() |
|
self.optimE.step() |
|
|
|
if self.local_rank == 0: |
|
print(f'LossE: {errorE.item()} | LossD: {errorD.item()}') |
|
return errorE, errorD |
|
|
|
|
|
class TrainerDirectDecoder(Trainer): |
|
|
|
def __init__( |
|
self, |
|
model: torch.nn.Module, |
|
train_data: DataLoader, |
|
optimizer: torch.optim.Optimizer, |
|
save_every: int, |
|
save_checkpoint_path: str, |
|
load_checkpoint_path: str, |
|
config, |
|
) -> None: |
|
super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) |
|
self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.criterionR = nn.MSELoss() |
|
|
|
def custom(self, module): |
|
def custom_forward(*inputs): |
|
inputs = module(inputs[0], length_mask=inputs[1]) |
|
return inputs |
|
return custom_forward |
|
|
|
def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): |
|
padding_idx = 2 |
|
error = torch.zeros(1).to(self.local_rank) |
|
error_tmp = .0 |
|
self.optimizer.zero_grad(set_to_none=True) |
|
|
|
for chunk in range(len(bucket_idx_masked)): |
|
idx_masked = bucket_idx_masked[chunk].to(self.local_rank) |
|
targets = bucket_targets[chunk].to(self.local_rank) |
|
idx_not_masked = bucket_idx_not_masked[chunk] |
|
idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) |
|
idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) |
|
mask = (idx_masked != padding_idx) |
|
|
|
|
|
x = self.model.module.encoder.tok_emb(idx_masked) |
|
x = self.model.module.encoder.drop(x) |
|
x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x, LengthMask(mask.sum(-1), max_len=idx_masked.shape[1])) |
|
|
|
|
|
input_masked_expanded = mask.unsqueeze(-1).expand(x.size()).float() |
|
sum_embeddings = torch.sum(x*input_masked_expanded, 1) |
|
sum_mask = torch.clamp(input_masked_expanded.sum(1), min=1e-9) |
|
true_set = sum_embeddings/sum_mask |
|
true_cte = x |
|
del x |
|
torch.cuda.empty_cache() |
|
|
|
|
|
input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() |
|
mask_embeddings = (true_cte * input_mask_expanded) |
|
true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) |
|
true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) |
|
|
|
|
|
pred_set, pred_ids = self.model.module.decoder(true_cte) |
|
|
|
|
|
pred_ids = pred_ids.view(-1, pred_ids.size(-1)) |
|
true_ids = idx_not_masked.view(-1) |
|
|
|
error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) |
|
error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) |
|
error_tmp = error_ids + error_set |
|
|
|
if chunk < len(bucket_idx_masked)-1: |
|
error_tmp.backward() |
|
error += error_tmp.detach() |
|
else: |
|
error += error_tmp |
|
|
|
torch.cuda.empty_cache() |
|
|
|
error.backward() |
|
self.optimizer.step() |
|
|
|
if self.local_rank == 0: |
|
print(f'Loss: {error.item()}') |
|
return error.item() |