|
--- |
|
language: |
|
- as |
|
- bn |
|
- gu |
|
- hi |
|
- mr |
|
- ne |
|
- or |
|
- pa |
|
- si |
|
- sa |
|
- bpy |
|
- mai |
|
- bh |
|
- gom |
|
license: apache-2.0 |
|
datasets: |
|
- oscar |
|
tags: |
|
- multilingual |
|
- albert |
|
- masked-language-modeling |
|
- sentence-order-prediction |
|
- fill-mask |
|
- xlmindic |
|
- nlp |
|
- indoaryan |
|
- indicnlp |
|
- iso15919 |
|
- transliteration |
|
widget: |
|
- text : 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli [MASK], aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.' |
|
|
|
co2_eq_emissions: |
|
emissions: "28.53 in grams of CO2" |
|
source: "calculated using this webstie https://mlco2.github.io/impact/#compute" |
|
training_type: "pretraining" |
|
geographical_location: "NA" |
|
hardware_used: "TPUv3-8 for about 180 hours or 7.5 days" |
|
--- |
|
|
|
# XLMIndic Base Uniscript |
|
|
|
This model is pretrained on a subset of the [OSCAR](https://huggingface.co/datasets/oscar) corpus spanning 14 Indo-Aryan languages. **Before pretraining this model we transliterate the text to [ISO-15919](https://en.wikipedia.org/wiki/ISO_15919) format using the [Aksharamukha](https://pypi.org/project/aksharamukha/) |
|
library.** A demo of Aksharamukha library is hosted [here](https://aksharamukha.appspot.com/converter) |
|
where you can transliterate your text and use it on our model on the inference widget. |
|
|
|
## Model description |
|
|
|
This model has the same configuration as the [ALBERT Base v2 model](https://huggingface.co/albert-base-v2/). Specifically, this model has the following configuration: |
|
|
|
- 12 repeating layers |
|
- 128 embedding dimension |
|
- 768 hidden dimension |
|
- 12 attention heads |
|
- 11M parameters |
|
- 512 sequence length |
|
|
|
## Training data |
|
|
|
This model was pretrained on the [OSCAR](https://huggingface.co/datasets/oscar) dataset which is a medium sized multilingual corpus containing text from 163 languages. We select a subset of 14 languages based on the following criteria: |
|
- Belongs to the [Indo-Aryan language family](https://en.wikipedia.org/wiki/Indo-Aryan_languages). |
|
- Uses a [Brahmic script](https://en.wikipedia.org/wiki/Brahmic_scripts). |
|
|
|
These are the 14 languages we pretrain this model on: |
|
- Assamese |
|
- Bangla |
|
- Bihari |
|
- Bishnupriya Manipuri |
|
- Goan Konkani |
|
- Gujarati |
|
- Hindi |
|
- Maithili |
|
- Marathi |
|
- Nepali |
|
- Oriya |
|
- Panjabi |
|
- Sanskrit |
|
- Sinhala |
|
|
|
## Transliteration |
|
|
|
*The unique component of this model is that it takes in ISO-15919 transliterated text.* |
|
|
|
The motivation behind this is this. When two languages share vocabularies, a machine learning model can exploit that to learn good cross-lingual representations. However if these two languages use different writing scripts it is difficult for a model to make the connection. Thus if if we can write the two languages in a single script then it is easier for the model to learn good cross-lingual representation. |
|
|
|
For many of the scripts currently in use, there are standard transliteration schemes to convert to the Latin script. In particular, for the Indic scripts the ISO-15919 transliteration scheme is designed to consistently transliterate texts written in different Indic scripts to the Latin script. |
|
|
|
An example of ISO-15919 transliteration for a piece of **Bangla** text is the following: |
|
|
|
**Original:** "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি কবি, ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক।" |
|
|
|
**Transliterated:** 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika.' |
|
|
|
Another example for a piece of **Hindi** text is the following: |
|
|
|
**Original:** "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" |
|
|
|
**Transliterated:** "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" |
|
|
|
|
|
## Training procedure |
|
|
|
### Preprocessing |
|
|
|
The texts are transliterated to ISO-15919 format using the Aksharamukha library. Then these are tokenized using SentencePiece and a vocabulary size of 50,000. The inputs of the model are |
|
then of the form: |
|
``` |
|
[CLS] Sentence A [SEP] Sentence B [SEP] |
|
``` |
|
|
|
### Training |
|
|
|
Training objective is the same as the original ALBERT. |
|
. |
|
The details of the masking procedure for each sentence are the following: |
|
- 15% of the tokens are masked. |
|
- In 80% of the cases, the masked tokens are replaced by `[MASK]`. |
|
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. |
|
- In the 10% remaining cases, the masked tokens are left as is. |
|
|
|
The details of the sentence order prediction example generation procedure for each sentence are the following: |
|
- Split the sentence into two parts A and B at a random index. |
|
- With 50% probability swap the two parts. |
|
|
|
The model was pretrained on TPUv3-8 for 1M steps. We have checkpoints available every 10k steps. We will upload these in the future. |
|
|
|
## Evaluation results |
|
We evaluated this model on the Indo-Aryan subset of languages (Panjabi, Oriya, Assamese, Bangla, Hindi, Marathi, Gujarati) from the [IndicGLUE](https://huggingface.co/datasets/indic_glue) benchmark dataset. We report the mean and standard deviation of nine fine-tuning runs for this model. |
|
|
|
### IndicGLUE |
|
Task | mBERT | XLM-R | IndicBERT-Base | XLMIndic-Base-Uniscript (This Model) | XLMIndic-Base-Multiscript (Ablation Model) |
|
-----| ----- | ----- | ------ | ------- | -------- |
|
Wikipedia Section Title Prediction| 71.90 | 65.45 | 69.40 | **81.78 ± 0.60** | 77.17 ± 0.76 |
|
Article Genre Classification | 88.64 | 96.61 | 97.72 | **98.70 ± 0.29** | 98.30 ± 0.26 |
|
Named Entity Recognition (F1-score) | 71.29 | 62.18 | 56.69 | **89.85 ± 1.14** | 83.19 ± 1.58 |
|
BBC Hindi News Article Classification | 60.55 | 75.52 | 74.60 | **79.14 ± 0.60** | 77.28 ± 1.50 |
|
Soham Bangla News Article Classification | 80.23 | 87.6 | 78.45 | **93.89 ± 0.48** | 93.22 ± 0.49 |
|
INLTK Gujarati Headlines | - | - | **92.91** | 90.73 ± 0.75 | 90.41 ± 0.69 |
|
INLTK Marathi Headlines | - | - | **94.30** | 92.04 ± 0.47 | 92.21 ± 0.23 |
|
IITP Hindi Product Reviews Sentiment Classification | 74.57 | **78.97** | 71.32 | 77.18 ± 0.77 | 76.33 ± 0.84 |
|
IITP Hindi Movie Reviews Sentiment Classification | 56.77 | 61.61 | 59.03 | **66.34 ± 0.16** | 65.91 ± 2.20 |
|
MIDAS Hindi Discourse Classification | 71.20 | **79.94** | 78.44 | 78.54 ± 0.91 | 78.39 ± 0.33 |
|
Cloze Style Question Answering | - | - | 37.16 | **41.54** | 38.21 |
|
|
|
## Intended uses & limitations |
|
|
|
This model is pretrained on Indo-Aryan languages. Thus it is intended to be used for downstream tasks on these languages. However, since Dravidian languages such as Malayalam, Telegu, Kannada etc share a lot of vocabulary with the Indo-Aryan languages, this model can potentially be used on those languages too (after transliterating the text to ISO-15919). |
|
|
|
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to |
|
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=xlmindic) to look for |
|
fine-tuned versions on a task that interests you. |
|
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) |
|
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text |
|
generation you should look at model like GPT2. |
|
|
|
### How to use |
|
|
|
To use this model you will need to first install the [Aksharamukha](https://pypi.org/project/aksharamukha/) library. |
|
|
|
```bash |
|
pip install aksharamukha |
|
``` |
|
|
|
Using this library you can transliterate any text wriiten in Indic scripts in the following way: |
|
```python |
|
>>> from aksharamukha import transliterate |
|
>>> text = "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" |
|
>>> transliterated_text = transliterate.process('autodetect', 'ISO', text) |
|
>>> transliterated_text |
|
"cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" |
|
``` |
|
|
|
Then you can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> from aksharamukha import transliterate |
|
>>> unmasker = pipeline('fill-mask', model='ibraheemmoosa/xlmindic-base-uniscript') |
|
>>> text = "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি [MASK], ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।" |
|
>>> transliterated_text = transliterate.process('Bengali', 'ISO', text) |
|
>>> transliterated_text |
|
'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli [MASK], aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama [MASK] puraskāra lābha karēna.' |
|
>>> unmasker(transliterated_text) |
|
[{'score': 0.39705055952072144, |
|
'token': 1500, |
|
'token_str': 'abhinētā', |
|
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli abhinētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, |
|
{'score': 0.20499080419540405, |
|
'token': 3585, |
|
'token_str': 'kabi', |
|
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, |
|
{'score': 0.1314290314912796, |
|
'token': 15402, |
|
'token_str': 'rājanētā', |
|
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli rājanētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, |
|
{'score': 0.060830358415842056, |
|
'token': 3212, |
|
'token_str': 'kalākāra', |
|
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kalākāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, |
|
{'score': 0.035522934049367905, |
|
'token': 11586, |
|
'token_str': 'sāhityakāra', |
|
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli sāhityakāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}] |
|
``` |
|
|
|
### Limitations and bias |
|
|
|
Even though we pretrain on a comparatively large multilingual corpus the model may exhibit harmful gender, ethnic and political bias. If you fine-tune this model on a task where these issues are important you should take special care when relying on the model to make decisions. |
|
|
|
### BibTeX entry and citation info |
|
|
|
Coming soon! |