|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: mit-b0-building-damage-lora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mit-b0-building-damage-lora |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0661 |
|
- Mean Iou: 0.3623 |
|
- Mean Accuracy: 0.7245 |
|
- Overall Accuracy: 0.7245 |
|
- Accuracy Building: 0.7245 |
|
- Iou Building: 0.7245 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Building | Iou Building | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------:|:------------:| |
|
| 0.0618 | 1.0 | 700 | 0.1463 | 0.4063 | 0.8125 | 0.8125 | 0.8125 | 0.8125 | |
|
| 0.0813 | 2.0 | 1400 | 0.0861 | 0.3950 | 0.7900 | 0.7900 | 0.7900 | 0.7900 | |
|
| 0.0715 | 3.0 | 2100 | 0.0856 | 0.3844 | 0.7689 | 0.7689 | 0.7689 | 0.7689 | |
|
| 0.076 | 4.0 | 2800 | 0.1296 | 0.4161 | 0.8322 | 0.8322 | 0.8322 | 0.8322 | |
|
| 0.0587 | 5.0 | 3500 | 0.0702 | 0.3078 | 0.6156 | 0.6156 | 0.6156 | 0.6156 | |
|
| 0.0662 | 6.0 | 4200 | 0.0708 | 0.3613 | 0.7226 | 0.7226 | 0.7226 | 0.7226 | |
|
| 0.059 | 7.0 | 4900 | 0.1063 | 0.4125 | 0.8249 | 0.8249 | 0.8249 | 0.8249 | |
|
| 0.0532 | 8.0 | 5600 | 0.0693 | 0.3547 | 0.7094 | 0.7094 | 0.7094 | 0.7094 | |
|
| 0.066 | 9.0 | 6300 | 0.0754 | 0.3932 | 0.7863 | 0.7863 | 0.7863 | 0.7863 | |
|
| 0.0628 | 10.0 | 7000 | 0.0692 | 0.3874 | 0.7747 | 0.7747 | 0.7747 | 0.7747 | |
|
| 0.0805 | 11.0 | 7700 | 0.0701 | 0.3896 | 0.7793 | 0.7793 | 0.7793 | 0.7793 | |
|
| 0.0595 | 12.0 | 8400 | 0.0663 | 0.3774 | 0.7549 | 0.7549 | 0.7549 | 0.7549 | |
|
| 0.0705 | 13.0 | 9100 | 0.0653 | 0.3717 | 0.7433 | 0.7433 | 0.7433 | 0.7433 | |
|
| 0.071 | 14.0 | 9800 | 0.0651 | 0.3731 | 0.7461 | 0.7461 | 0.7461 | 0.7461 | |
|
| 0.0656 | 15.0 | 10500 | 0.0648 | 0.3613 | 0.7227 | 0.7227 | 0.7227 | 0.7227 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|