metadata
base_model: nadsoft/Hamsa-large-v0.1-beta
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: hamsa-pretrained
results: []
hamsa-pretrained
This model is a fine-tuned version of nadsoft/Hamsa-large-v0.1-beta on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4344
- Wer: 29.2057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 35000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.895 | 0.01 | 1000 | 1.8765 | 86.7012 |
1.6569 | 0.01 | 2000 | 1.5809 | 84.0907 |
1.3312 | 0.02 | 3000 | 1.3458 | 75.7090 |
1.2369 | 0.02 | 4000 | 1.2389 | 73.1365 |
1.1518 | 0.03 | 5000 | 1.1097 | 66.8170 |
1.0135 | 0.03 | 6000 | 1.0616 | 65.1843 |
1.0965 | 0.04 | 7000 | 1.0084 | 65.8582 |
0.867 | 0.04 | 8000 | 0.9305 | 57.6093 |
0.9425 | 0.05 | 9000 | 0.8907 | 55.4854 |
0.9501 | 0.05 | 10000 | 0.8393 | 54.0212 |
0.8602 | 0.06 | 11000 | 0.8096 | 53.4968 |
0.7596 | 0.06 | 12000 | 0.7761 | 51.9305 |
0.7334 | 0.07 | 13000 | 0.7694 | 49.4411 |
0.708 | 0.07 | 14000 | 0.7336 | 47.0040 |
0.7112 | 0.08 | 15000 | 0.7149 | 47.5783 |
0.6989 | 0.08 | 16000 | 0.6713 | 44.2986 |
0.7025 | 0.09 | 17000 | 0.6639 | 43.7481 |
0.6127 | 0.09 | 18000 | 0.6477 | 42.9127 |
0.6342 | 0.1 | 19000 | 0.6298 | 42.6826 |
0.6174 | 0.1 | 20000 | 0.6080 | 40.1172 |
0.5551 | 0.11 | 21000 | 0.5896 | 39.0398 |
0.5353 | 0.11 | 22000 | 0.5753 | 39.1253 |
0.5528 | 0.12 | 23000 | 0.5588 | 40.2881 |
0.5423 | 0.12 | 24000 | 0.5445 | 35.6606 |
0.5069 | 0.13 | 25000 | 0.5304 | 35.9358 |
0.4356 | 0.13 | 26000 | 0.5187 | 34.4930 |
0.5111 | 0.14 | 27000 | 0.5035 | 33.4227 |
0.5613 | 0.14 | 28000 | 0.4912 | 33.0952 |
0.4165 | 0.15 | 29000 | 0.4825 | 32.0155 |
0.4736 | 0.15 | 30000 | 0.4716 | 32.0914 |
0.4213 | 0.16 | 31000 | 0.4618 | 31.6026 |
0.4242 | 0.16 | 32000 | 0.4514 | 30.3757 |
0.3837 | 0.17 | 33000 | 0.4448 | 30.3116 |
0.4321 | 0.17 | 34000 | 0.4377 | 29.4691 |
0.4268 | 0.18 | 35000 | 0.4344 | 29.2057 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0