pandafish-dt-7b

pandafish-dt-7b is a dare_ties merge of Experiment26-7B and MergeCeption-7B-v3 using LazyMergekit by mlabonne

πŸ’¬ Try it

Playground on Huggingface Space

⚑ Quantized models

πŸ† Evals

Evals from the Nous Benchmark suite:

Model Average AGIEval GPT4All TruthfulQA Bigbench
AlphaMonarch-7B πŸ“„ 62.74 45.37 77.01 78.39 50.2
Monarch-7B πŸ“„ 62.68 45.48 77.07 78.04 50.14
🐑 pandafish-dt-7b πŸ“„ 62.65 45.24 77.19 78.41 49.76
MonarchPipe-7B-slerp πŸ“„ 58.77 46.12 74.89 66.59 47.49
NeuralHermes-2.5-Mistral-7B πŸ“„ 53.51 43.67 73.24 55.37 41.76
Mistral-7B-Instruct-v0.2 πŸ“„ 54.81 38.5 71.64 66.82 42.29
OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94
pandafish-7b πŸ“„ 51.99 40 74.23 53.22 40.51

🧩 Configuration

models:
  - model: yam-peleg/Experiment26-7B
    # No parameters necessary for base model
  - model: CultriX/MergeCeption-7B-v3
    parameters:
      density: 0.53
      weight: 0.4
merge_method: dare_ties
base_model: yam-peleg/Experiment26-7B
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ichigoberry/pandafish-dt-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
49
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ichigoberry/pandafish-dt-7b

Finetuned
(3)
this model
Merges
1 model
Quantizations
2 models

Spaces using ichigoberry/pandafish-dt-7b 6