Multilingual Identification of English Code-Switching
AnE-NER (Any-English Code-Switching Named Entity Recognition) is a token-level model for detecting named entities in code-switching texts. It classifies words into two classes: I
(inside a named entity) and O
(outside a named entity). The model shows strong performance on both languages seen and unseen in the training data.
Usage
You can use AnE-NER with Huggingface’s pipeline
or AutoModelForTokenClassification
.
Let's try the following example (taken from this paper)
input = "My Facebook, Ig & Twitter is hellaa dead yall Jk soy yo que has no life!"
Pipeline
from transformers import pipeline
classifier = pipeline("token-classification", model="igorsterner/AnE-NER", aggregation_strategy="simple")
result = classifier(input)
which returns
[{'entity_group': 'I',
'score': 0.95482016,
'word': 'Facebook',
'start': 3,
'end': 11},
{'entity_group': 'I',
'score': 0.9638739,
'word': 'Ig',
'start': 13,
'end': 15},
{'entity_group': 'I',
'score': 0.98207414,
'word': 'Twitter',
'start': 18,
'end': 25}]
Advanced
If your input is already word-tokenized, and you want the corresponding word NER labels, you can try the following strategy
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
lid_model_name = "igorsterner/AnE-NER"
lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name)
lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name)
word_tokens = ['My', 'Facebook', ',', 'Ig', '&', 'Twitter', 'is', 'hellaa', 'dead', 'yall', 'Jk', 'soy', 'yo', 'que', 'has', 'no', 'life', '!']
subword_inputs = lid_tokenizer(
word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt"
)
subword2word = subword_inputs.word_ids(batch_index=0)
logits = lid_model(**subword_inputs).logits
predictions = torch.argmax(logits, dim=2)
predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]]
predicted_word_labels = [[] for _ in range(len(word_tokens))]
for idx, predicted_subword in enumerate(predicted_subword_labels):
if subword2word[idx] is not None:
predicted_word_labels[subword2word[idx]].append(predicted_subword)
def most_frequent(lst):
return max(set(lst), key=lst.count) if lst else "Other"
predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels]
for token, label in zip(word_tokens, predicted_word_labels):
print(f"{token}: {label}")
which returns
My: O
Facebook: I
,: O
Ig: I
&: O
Twitter: I
is: O
hellaa: O
dead: O
yall: O
Jk: O
soy: O
yo: O
que: O
has: O
no: O
life!: O
Word-level language labels
If you also want the language of each word, you can additionaly run AnE-LID. Checkout my evaluation scripts for examples of using both at the same time, as we did in the paper: https://github.com/igorsterner/AnE/tree/main/eval.
For the above example, you can get:
My: English
Facebook: NE.English
,: Other
Ig: NE.English
&: Other
Twitter: NE.English
is: English
hellaa: English
dead: English
yall: English
Jk: English
soy: notEnglish
yo: notEnglish
que: notEnglish
has: English
no: English
life: English
!: Other
Citation
Please consider citing my work if it helped you
@inproceedings{sterner-2024-multilingual,
title = "Multilingual Identification of {E}nglish Code-Switching",
author = "Sterner, Igor",
editor = {Scherrer, Yves and
Jauhiainen, Tommi and
Ljube{\v{s}}i{\'c}, Nikola and
Zampieri, Marcos and
Nakov, Preslav and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.vardial-1.14",
doi = "10.18653/v1/2024.vardial-1.14",
pages = "163--173",
abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.",
}
- Downloads last month
- 18
Model tree for igorsterner/AnE-NER
Base model
FacebookAI/xlm-roberta-large