ChineseBERT-for-csc / csc_model.py
iioSnail's picture
update
2e14c11 verified
import json
import os
import shutil
import time
from pathlib import Path
from typing import List
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from torch import nn
from torch.nn import functional as F
from transformers import BertPreTrainedModel, BertModel
from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutputWithPooling
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertLMPredictionHead
cache_path = Path(os.path.abspath(__file__)).parent
def download_file(filename: str, path: Path):
if os.path.exists(cache_path / filename):
return
if os.path.exists(path / filename):
shutil.copyfile(path / filename, cache_path / filename)
return
hf_hub_download(
"iioSnail/ChineseBERT-for-csc",
filename,
local_dir=cache_path
)
time.sleep(0.2)
class ChineseBertForCSC(BertPreTrainedModel):
def __init__(self, config):
super(ChineseBertForCSC, self).__init__(config)
self.model = Dynamic_GlyceBertForMultiTask(config)
self.tokenizer = None
def forward(self, **kwargs):
return self.model(**kwargs)
def set_tokenizer(self, tokenizer):
self.tokenizer = tokenizer
def _predict(self, sentence):
if self.tokenizer is None:
return "Please init tokenizer by `set_tokenizer(tokenizer)` before predict."
inputs = self.tokenizer([sentence], return_tensors='pt')
output_hidden = self.model(**inputs).logits
return self.tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1])
def predict(self, sentence, window=1):
_src_tokens = list(sentence)
src_tokens = list(sentence)
pred_tokens = self._predict(sentence)
for _ in range(window):
record_index = []
for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)):
if a != b:
record_index.append(i)
src_tokens = pred_tokens
pred_tokens = self._predict(''.join(pred_tokens))
for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)):
# 若这个token被修改了,且在窗口范围内,则什么都不做。
if a != b and any([abs(i - x) <= 1 for x in record_index]):
pass
else:
pred_tokens[i] = src_tokens[i]
return ''.join(pred_tokens)
#################################ChineseBERT Source Code##############################################
class Dynamic_GlyceBertForMultiTask(BertPreTrainedModel):
def __init__(self, config):
super(Dynamic_GlyceBertForMultiTask, self).__init__(config)
self.bert = GlyceBertModel(config)
self.cls = MultiTaskHeads(config)
def get_output_embeddings(self):
return self.cls.predictions.decoder
def forward(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs_x = self.bert(
input_ids,
pinyin_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoded_x = outputs_x[0]
prediction_scores = self.cls(encoded_x)
return MaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs_x.hidden_states,
attentions=outputs_x.attentions,
)
class GlyceBertModel(BertModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the models.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the models at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
models = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = models(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
super(GlyceBertModel, self).__init__(config)
self.config = config
self.embeddings = FusionBertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
def forward(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the models is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the models is configured as a decoder.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, pinyin_ids=pinyin_ids, position_ids=position_ids, token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def forward_with_embedding(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embedding=None
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the models is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the models is configured as a decoder.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
assert embedding is not None
embedding_output = embedding
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class MultiTaskHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class FusionBertEmbeddings(nn.Module):
"""
Construct the embeddings from word, position, glyph, pinyin and token_type embeddings.
"""
def __init__(self, config):
super(FusionBertEmbeddings, self).__init__()
self.path = Path(config._name_or_path)
config_path = cache_path / 'config'
if not os.path.exists(config_path):
os.makedirs(config_path)
font_files = []
download_file("config/STFANGSO.TTF24.npy", self.path)
download_file("config/STXINGKA.TTF24.npy", self.path)
download_file("config/方正古隶繁体.ttf24.npy", self.path)
for file in os.listdir(config_path):
if file.endswith(".npy"):
font_files.append(config_path / file)
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.pinyin_embeddings = PinyinEmbedding(embedding_size=128, pinyin_out_dim=config.hidden_size, config=config)
self.glyph_embeddings = GlyphEmbedding(font_npy_files=font_files)
# self.LayerNorm is not snake-cased to stick with TensorFlow models variable name and be able to load
# any TensorFlow checkpoint file
self.glyph_map = nn.Linear(1728, config.hidden_size)
self.map_fc = nn.Linear(config.hidden_size * 3, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(self, input_ids=None, pinyin_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# get char embedding, pinyin embedding and glyph embedding
word_embeddings = inputs_embeds # [bs,l,hidden_size]
pinyin_embeddings = self.pinyin_embeddings(pinyin_ids) # [bs,l,hidden_size]
glyph_embeddings = self.glyph_map(self.glyph_embeddings(input_ids)) # [bs,l,hidden_size]
# fusion layer
concat_embeddings = torch.cat((word_embeddings, pinyin_embeddings, glyph_embeddings), 2)
inputs_embeds = self.map_fc(concat_embeddings)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class PinyinEmbedding(nn.Module):
def __init__(self, embedding_size: int, pinyin_out_dim: int, config):
"""
Pinyin Embedding Module
Args:
embedding_size: the size of each embedding vector
pinyin_out_dim: kernel number of conv
"""
super(PinyinEmbedding, self).__init__()
download_file("config/pinyin_map.json", Path(config._name_or_path))
with open(cache_path / 'config' / 'pinyin_map.json') as fin:
pinyin_dict = json.load(fin)
self.pinyin_out_dim = pinyin_out_dim
self.embedding = nn.Embedding(len(pinyin_dict['idx2char']), embedding_size)
self.conv = nn.Conv1d(in_channels=embedding_size, out_channels=self.pinyin_out_dim, kernel_size=2,
stride=1, padding=0)
def forward(self, pinyin_ids):
"""
Args:
pinyin_ids: (bs*sentence_length*pinyin_locs)
Returns:
pinyin_embed: (bs,sentence_length,pinyin_out_dim)
"""
# input pinyin ids for 1-D conv
embed = self.embedding(pinyin_ids) # [bs,sentence_length,pinyin_locs,embed_size]
bs, sentence_length, pinyin_locs, embed_size = embed.shape
view_embed = embed.view(-1, pinyin_locs, embed_size) # [(bs*sentence_length),pinyin_locs,embed_size]
input_embed = view_embed.permute(0, 2, 1) # [(bs*sentence_length), embed_size, pinyin_locs]
# conv + max_pooling
pinyin_conv = self.conv(input_embed) # [(bs*sentence_length),pinyin_out_dim,H]
pinyin_embed = F.max_pool1d(pinyin_conv, pinyin_conv.shape[-1]) # [(bs*sentence_length),pinyin_out_dim,1]
return pinyin_embed.view(bs, sentence_length, self.pinyin_out_dim) # [bs,sentence_length,pinyin_out_dim]
class GlyphEmbedding(nn.Module):
"""Glyph2Image Embedding"""
def __init__(self, font_npy_files: List[str]):
super(GlyphEmbedding, self).__init__()
font_arrays = [
np.load(np_file).astype(np.float32) for np_file in font_npy_files
]
self.vocab_size = font_arrays[0].shape[0]
self.font_num = len(font_arrays)
self.font_size = font_arrays[0].shape[-1]
# N, C, H, W
font_array = np.stack(font_arrays, axis=1)
self.embedding = nn.Embedding(
num_embeddings=self.vocab_size,
embedding_dim=self.font_size ** 2 * self.font_num,
_weight=torch.from_numpy(font_array.reshape([self.vocab_size, -1]))
)
def forward(self, input_ids):
"""
get glyph images for batch inputs
Args:
input_ids: [batch, sentence_length]
Returns:
images: [batch, sentence_length, self.font_num*self.font_size*self.font_size]
"""
# return self.embedding(input_ids).view([-1, self.font_num, self.font_size, self.font_size])
return self.embedding(input_ids)