ChineseBERT-for-csc / csc_tokenizer.py
iioSnail's picture
update
d3a1af5 verified
import json
import os
import shutil
import time
from pathlib import Path
from typing import List, Union, Optional
import tokenizers
import torch
from torch import NoneType
from huggingface_hub import hf_hub_download
from pypinyin import pinyin, Style
from transformers.tokenization_utils_base import TruncationStrategy
from transformers.utils import PaddingStrategy
from transformers.utils.generic import TensorType
try:
from tokenizers import BertWordPieceTokenizer
except:
from tokenizers.implementations import BertWordPieceTokenizer
from transformers import BertTokenizerFast, BatchEncoding
cache_path = Path(os.path.abspath(__file__)).parent
def download_file(filename: str, path: Path):
if os.path.exists(cache_path / filename):
return
if os.path.exists(path / filename):
shutil.copyfile(path / filename, cache_path / filename)
return
hf_hub_download(
"iioSnail/ChineseBERT-for-csc",
filename,
local_dir=cache_path
)
time.sleep(0.2)
class ChineseBertTokenizer(BertTokenizerFast):
def __init__(self, **kwargs):
super(ChineseBertTokenizer, self).__init__(**kwargs)
self.path = Path(kwargs['name_or_path'])
vocab_file = cache_path / 'vocab.txt'
config_path = cache_path / 'config'
if not os.path.exists(config_path):
os.makedirs(config_path)
self.max_length = 512
download_file('vocab.txt', self.path)
self.tokenizer = BertWordPieceTokenizer(str(vocab_file))
# load pinyin map dict
download_file('config/pinyin_map.json', self.path)
with open(config_path / 'pinyin_map.json', encoding='utf8') as fin:
self.pinyin_dict = json.load(fin)
# load char id map tensor
download_file('config/id2pinyin.json', self.path)
with open(config_path / 'id2pinyin.json', encoding='utf8') as fin:
self.id2pinyin = json.load(fin)
# load pinyin map tensor
download_file('config/pinyin2tensor.json', self.path)
with open(config_path / 'pinyin2tensor.json', encoding='utf8') as fin:
self.pinyin2tensor = json.load(fin)
def __call__(self,
text: Union[str, List[str], List[List[str]]] = None,
text_pair: Union[str, List[str], List[List[str]], NoneType] = None,
text_target: Union[str, List[str], List[List[str]]] = None,
text_pair_target: Union[str, List[str], List[List[str]], NoneType] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Union[str, TensorType, NoneType] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True, **kwargs) -> BatchEncoding:
encoding = super(ChineseBertTokenizer, self).__call__(
text=text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_offsets_mapping=True,
return_length=return_length,
verbose=verbose,
)
input_ids = encoding.input_ids
pinyin_ids = None
if type(text) == str:
offsets = encoding.offset_mapping[0].tolist()
tokens = self.sentence_to_tokens(text, offsets)
pinyin_ids = [self.convert_sentence_to_pinyin_ids(text, tokens, offsets)]
if type(text) == list or type(text) == tuple:
pinyin_ids = []
for i, sentence in enumerate(text):
offsets = encoding.offset_mapping[i].tolist()
tokens = self.sentence_to_tokens(sentence, offsets)
pinyin_ids.append(self.convert_sentence_to_pinyin_ids(sentence, tokens, offsets))
if torch.is_tensor(encoding.input_ids):
pinyin_ids = torch.LongTensor(pinyin_ids)
encoding['pinyin_ids'] = pinyin_ids
if not return_offsets_mapping:
del encoding['offset_mapping']
return encoding
def sentence_to_tokens(self, sentence, offsets):
tokens = []
for start, end in offsets:
tokens.append(sentence[start:end])
return tokens
def convert_sentence_to_pinyin_ids(self, sentence: str, tokens, offsets):
# get pinyin of a sentence
pinyin_list = pinyin(sentence, style=Style.TONE3, heteronym=True, errors=lambda x: [['not chinese'] for _ in x])
pinyin_locs = {}
# get pinyin of each location
for index, item in enumerate(pinyin_list):
pinyin_string = item[0]
# not a Chinese character, pass
if pinyin_string == "not chinese":
continue
if pinyin_string in self.pinyin2tensor:
pinyin_locs[index] = self.pinyin2tensor[pinyin_string]
else:
ids = [0] * 8
for i, p in enumerate(pinyin_string):
if p not in self.pinyin_dict["char2idx"]:
ids = [0] * 8
break
ids[i] = self.pinyin_dict["char2idx"][p]
pinyin_locs[index] = ids
# find chinese character location, and generate pinyin ids
pinyin_ids = []
for idx, (token, offset) in enumerate(zip(tokens, offsets)):
if offset[1] - offset[0] != 1:
pinyin_ids.append([0] * 8)
continue
if offset[0] in pinyin_locs:
pinyin_ids.append(pinyin_locs[offset[0]])
else:
pinyin_ids.append([0] * 8)
return pinyin_ids