|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** ikedachin |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|
|
|
|
### 使用したdataset |
|
下記からランダムに5000データを抽出 |
|
- DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 |
|
- llm-jp/magpie-sft-v1.0 |
|
|
|
|
|
### 実行コード |
|
|
|
|
|
```:Python |
|
from tqdm import tqdm |
|
import os |
|
import json |
|
|
|
import torch |
|
from unsloth import FastLanguageModel |
|
|
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
BitsAndBytesConfig, |
|
) |
|
|
|
HF_TOKEN = "your-token" |
|
model_name = "ikedachin/llm-jp-3-13b-ozaki-ds-5000" |
|
|
|
# QLoRAの設定 |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=False, |
|
|
|
) |
|
|
|
# modelのダウンロード |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token = HF_TOKEN |
|
) |
|
|
|
# tokenizerのダウンロード |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) |
|
|
|
|
|
prompt = "<ここに入力を入れる>" |
|
|
|
# トークン化 |
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
|
|
# 推論 |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
max_new_tokens=300, |
|
do_sample=False, |
|
repetition_penalty=1.2 |
|
)[0] |
|
|
|
# トークンから言葉にデコード |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
``` |
|
|