t5-large-coedit

This model is a fine-tuned version of google-t5/t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5679
  • Rouge1: 0.6412
  • Rouge2: 0.5082
  • Rougel: 0.6068
  • Rougelsum: 0.6066
  • Sacreblue: 25.9478
  • Memory Used: 4111.5
  • Cuda Allocated: 2814.4805
  • Cuda Reserved: 2816.0
  • Ram Usage: 3545.0898
  • Em: 0.0333
  • Gen Len: 17.2363

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 50
  • eval_batch_size: 50
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Sacreblue Memory Used Cuda Allocated Cuda Reserved Ram Usage Em Gen Len
3.898 0.16 50 0.7311 0.3939 0.3011 0.3707 0.3708 10.1387 4111.5 2814.4805 2816.0 3545.0898 0.0014 13.4078
0.5752 0.31 100 0.6169 0.6336 0.4988 0.5994 0.5993 25.1341 4111.5 2814.4805 2816.0 3545.0898 0.0169 17.2158
0.5095 0.47 150 0.5912 0.6369 0.5033 0.6026 0.6026 25.5313 4111.5 2814.4805 2816.0 3545.0898 0.0256 17.2322
0.4836 0.63 200 0.5777 0.6398 0.5061 0.6053 0.6052 25.7757 4111.5 2814.4805 2816.0 3545.0898 0.0297 17.235
0.4634 0.78 250 0.5709 0.6411 0.5077 0.6067 0.6066 25.9025 4111.5 2814.4805 2816.0 3545.0898 0.0315 17.2362
0.4568 0.94 300 0.5679 0.6412 0.5082 0.6068 0.6066 25.9478 4111.5 2814.4805 2816.0 3545.0898 0.0333 17.2363

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
738M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for iliazlobin/t5-large-coedit

Base model

google-t5/t5-large
Finetuned
(75)
this model