|
--- |
|
base_model: Qwen/Qwen-14B |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: OpenAssistant_oasst_top1_2023-08-25 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# OpenAssistant_oasst_top1_2023-08-25 |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6501 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 0.01 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.163 | 0.02 | 16 | 1.9459 | |
|
| 1.9498 | 0.04 | 32 | 1.8467 | |
|
| 1.9578 | 0.06 | 48 | 1.7864 | |
|
| 1.8398 | 0.08 | 64 | 1.7530 | |
|
| 1.7696 | 0.1 | 80 | 1.7076 | |
|
| 1.7744 | 0.12 | 96 | 1.7275 | |
|
| 1.8108 | 0.14 | 112 | 1.6887 | |
|
| 1.7707 | 0.17 | 128 | 1.6942 | |
|
| 1.787 | 0.19 | 144 | 1.6894 | |
|
| 1.7029 | 0.21 | 160 | 1.6760 | |
|
| 1.6732 | 0.23 | 176 | 1.6838 | |
|
| 1.6313 | 0.25 | 192 | 1.6754 | |
|
| 1.7071 | 0.27 | 208 | 1.6752 | |
|
| 1.6781 | 0.29 | 224 | 1.6741 | |
|
| 1.7782 | 0.31 | 240 | 1.6698 | |
|
| 1.6836 | 0.33 | 256 | 1.6592 | |
|
| 1.7229 | 0.35 | 272 | 1.6633 | |
|
| 1.7196 | 0.37 | 288 | 1.6638 | |
|
| 1.6892 | 0.39 | 304 | 1.6627 | |
|
| 1.6844 | 0.41 | 320 | 1.6557 | |
|
| 1.8027 | 0.43 | 336 | 1.6540 | |
|
| 1.692 | 0.45 | 352 | 1.6577 | |
|
| 1.7088 | 0.47 | 368 | 1.6611 | |
|
| 1.7987 | 0.5 | 384 | 1.6557 | |
|
| 1.709 | 0.52 | 400 | 1.6600 | |
|
| 1.701 | 0.54 | 416 | 1.6588 | |
|
| 1.6784 | 0.56 | 432 | 1.6594 | |
|
| 1.6997 | 0.58 | 448 | 1.6484 | |
|
| 1.7811 | 0.6 | 464 | 1.6583 | |
|
| 1.7628 | 0.62 | 480 | 1.6461 | |
|
| 1.6254 | 0.64 | 496 | 1.6527 | |
|
| 1.6684 | 0.66 | 512 | 1.6520 | |
|
| 1.6837 | 0.68 | 528 | 1.6570 | |
|
| 1.7209 | 0.7 | 544 | 1.6543 | |
|
| 1.677 | 0.72 | 560 | 1.6562 | |
|
| 1.6819 | 0.74 | 576 | 1.6517 | |
|
| 1.7072 | 0.76 | 592 | 1.6551 | |
|
| 1.6446 | 0.78 | 608 | 1.6562 | |
|
| 1.6908 | 0.8 | 624 | 1.6528 | |
|
| 1.7209 | 0.83 | 640 | 1.6518 | |
|
| 1.6818 | 0.85 | 656 | 1.6517 | |
|
| 1.7007 | 0.87 | 672 | 1.6525 | |
|
| 1.8077 | 0.89 | 688 | 1.6522 | |
|
| 1.6856 | 0.91 | 704 | 1.6516 | |
|
| 1.7247 | 0.93 | 720 | 1.6509 | |
|
| 1.6645 | 0.95 | 736 | 1.6500 | |
|
| 1.6841 | 0.97 | 752 | 1.6499 | |
|
| 1.7244 | 0.99 | 768 | 1.6501 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|