segformer-b0-finetuned-agriculture-freeze-encoder

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4279
  • Mean Iou: 0.2863
  • Mean Accuracy: 0.3449
  • Overall Accuracy: 0.3991
  • Accuracy Unlabeled: nan
  • Accuracy Nutrient Deficiency: 0.3911
  • Accuracy Planter Skip: 0.2441
  • Accuracy Water: 0.7100
  • Accuracy Waterway: 0.1217
  • Accuracy Weed Cluster: 0.2574
  • Iou Unlabeled: 0.0
  • Iou Nutrient Deficiency: 0.3885
  • Iou Planter Skip: 0.2436
  • Iou Water: 0.7074
  • Iou Waterway: 0.1213
  • Iou Weed Cluster: 0.2569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Nutrient Deficiency Accuracy Planter Skip Accuracy Water Accuracy Waterway Accuracy Weed Cluster Iou Unlabeled Iou Nutrient Deficiency Iou Planter Skip Iou Water Iou Waterway Iou Weed Cluster
0.2023 1.0 8145 0.5192 0.1103 0.1327 0.1902 nan 0.2070 0.0003 0.3457 0.0000 0.1105 0.0 0.2057 0.0003 0.3455 0.0000 0.1103
0.7172 2.0 16290 0.4974 0.1282 0.1543 0.2138 nan 0.2617 0.0332 0.3582 0.0098 0.1083 0.0 0.2601 0.0332 0.3582 0.0098 0.1082
0.6844 3.0 24435 0.4657 0.2032 0.2445 0.3092 nan 0.3512 0.1223 0.5564 0.0384 0.1544 0.0 0.3492 0.1220 0.5554 0.0382 0.1543
0.2052 4.0 32580 0.4671 0.1912 0.2299 0.2961 nan 0.3261 0.1340 0.4389 0.0347 0.2160 0.0 0.3245 0.1338 0.4389 0.0346 0.2154
0.6564 5.0 40725 0.4468 0.2317 0.2788 0.3460 nan 0.3663 0.1487 0.5721 0.0793 0.2278 0.0 0.3642 0.1485 0.5715 0.0790 0.2272
0.1997 6.0 48870 0.4483 0.2392 0.2879 0.3446 nan 0.3524 0.1821 0.6219 0.0772 0.2059 0.0 0.3501 0.1817 0.6209 0.0769 0.2055
0.3586 7.0 57015 0.4413 0.2379 0.2860 0.3492 nan 0.3676 0.2073 0.5656 0.0505 0.2392 0.0 0.3661 0.2069 0.5653 0.0504 0.2387
0.7879 8.0 65160 0.4369 0.2501 0.3008 0.3597 nan 0.3632 0.2320 0.6003 0.0585 0.2497 0.0 0.3618 0.2315 0.6000 0.0584 0.2491
1.137 9.0 73305 0.4393 0.2649 0.3189 0.3853 nan 0.4236 0.2202 0.6417 0.0772 0.2316 0.0 0.4212 0.2197 0.6405 0.0770 0.2312
0.2625 10.0 81450 0.4388 0.2540 0.3057 0.3850 nan 0.4493 0.2058 0.5276 0.0705 0.2755 0.0 0.4460 0.2054 0.5275 0.0704 0.2748
0.2108 11.0 89595 0.4308 0.2845 0.3427 0.4149 nan 0.4475 0.2446 0.6482 0.0891 0.2838 0.0 0.4438 0.2440 0.6472 0.0889 0.2830
0.3237 12.0 97740 0.4251 0.2858 0.3440 0.4225 nan 0.4322 0.2372 0.6314 0.0854 0.3336 0.0 0.4296 0.2367 0.6309 0.0853 0.3322
1.0289 13.0 105885 0.4488 0.2604 0.3138 0.3823 nan 0.4623 0.2111 0.6343 0.0744 0.1869 0.0 0.4575 0.2107 0.6332 0.0742 0.1867
0.6843 14.0 114030 0.4253 0.2922 0.3519 0.4252 nan 0.4515 0.2267 0.6901 0.1089 0.2824 0.0 0.4481 0.2263 0.6884 0.1086 0.2815
0.2695 15.0 122175 0.4299 0.2856 0.3437 0.3878 nan 0.3812 0.2818 0.6873 0.1207 0.2472 0.0 0.3801 0.2811 0.6858 0.1203 0.2466
0.3991 16.0 130320 0.4225 0.2938 0.3534 0.4137 nan 0.4213 0.2714 0.6712 0.1131 0.2898 0.0 0.4198 0.2708 0.6702 0.1129 0.2888
0.7352 17.0 138465 0.4303 0.2732 0.3288 0.3894 nan 0.4176 0.2558 0.5941 0.1024 0.2740 0.0 0.4150 0.2553 0.5939 0.1022 0.2731
0.6884 18.0 146610 0.4243 0.2956 0.3556 0.4135 nan 0.4154 0.2735 0.6575 0.1294 0.3024 0.0 0.4137 0.2728 0.6568 0.1290 0.3013
0.3863 19.0 154755 0.4249 0.2861 0.3445 0.4184 nan 0.4597 0.2254 0.6370 0.1138 0.2864 0.0 0.4561 0.2251 0.6365 0.1135 0.2858
0.3208 20.0 162900 0.4279 0.2863 0.3449 0.3991 nan 0.3911 0.2441 0.7100 0.1217 0.2574 0.0 0.3885 0.2436 0.7074 0.1213 0.2569

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
190
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for imessam/segformer-b0-finetuned-agriculture-freeze-encoder

Base model

nvidia/mit-b0
Finetuned
(352)
this model