|
import os |
|
import gc |
|
import cv2 |
|
import copy |
|
import torch |
|
from collections import OrderedDict |
|
|
|
from modules import scripts, shared |
|
from modules.devices import device, torch_gc, cpu |
|
import local_groundingdino |
|
|
|
|
|
dino_model_cache = OrderedDict() |
|
sam_extension_dir = scripts.basedir() |
|
dino_model_dir = os.path.join(sam_extension_dir, "models/grounding-dino") |
|
dino_model_list = ["GroundingDINO_SwinT_OGC (694MB)", "GroundingDINO_SwinB (938MB)"] |
|
dino_model_info = { |
|
"GroundingDINO_SwinT_OGC (694MB)": { |
|
"checkpoint": "groundingdino_swint_ogc.pth", |
|
"config": os.path.join(dino_model_dir, "GroundingDINO_SwinT_OGC.py"), |
|
"url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth", |
|
}, |
|
"GroundingDINO_SwinB (938MB)": { |
|
"checkpoint": "groundingdino_swinb_cogcoor.pth", |
|
"config": os.path.join(dino_model_dir, "GroundingDINO_SwinB.cfg.py"), |
|
"url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth" |
|
}, |
|
} |
|
dino_install_issue_text = "permanently switch to local groundingdino on Settings/Segment Anything or submit an issue to https://github.com/IDEA-Research/Grounded-Segment-Anything/issues." |
|
|
|
|
|
def install_goundingdino(): |
|
if shared.opts.data.get("sam_use_local_groundingdino", False): |
|
print("Using local groundingdino.") |
|
return False |
|
|
|
def verify_dll(install_local=True): |
|
try: |
|
from groundingdino import _C |
|
print("GroundingDINO dynamic library have been successfully built.") |
|
return True |
|
except Exception: |
|
import traceback |
|
traceback.print_exc() |
|
def run_pip_uninstall(command, desc=None): |
|
from launch import python, run |
|
default_command_live = (os.environ.get('WEBUI_LAUNCH_LIVE_OUTPUT') == "1") |
|
return run(f'"{python}" -m pip uninstall -y {command}', desc=f"Uninstalling {desc}", errdesc=f"Couldn't uninstall {desc}", live=default_command_live) |
|
if install_local: |
|
print(f"Failed to build dymanic library. Will uninstall GroundingDINO from pip and fall back to local groundingdino this time. Please {dino_install_issue_text}") |
|
run_pip_uninstall( |
|
f"groundingdino", |
|
f"sd-webui-segment-anything requirement: groundingdino") |
|
else: |
|
print(f"Failed to build dymanic library. Will uninstall GroundingDINO from pip and re-try installing from GitHub source code. Please {dino_install_issue_text}") |
|
run_pip_uninstall( |
|
f"uninstall groundingdino", |
|
f"sd-webui-segment-anything requirement: groundingdino") |
|
return False |
|
|
|
import launch |
|
if launch.is_installed("groundingdino"): |
|
print("Found GroundingDINO in pip. Verifying if dynamic library build success.") |
|
if verify_dll(install_local=False): |
|
return True |
|
try: |
|
launch.run_pip( |
|
f"install git+https://github.com/IDEA-Research/GroundingDINO", |
|
f"sd-webui-segment-anything requirement: groundingdino") |
|
print("GroundingDINO install success. Verifying if dynamic library build success.") |
|
return verify_dll() |
|
except Exception: |
|
import traceback |
|
traceback.print_exc() |
|
print(f"GroundingDINO install failed. Will fall back to local groundingdino this time. Please {dino_install_issue_text}") |
|
return False |
|
|
|
|
|
def show_boxes(image_np, boxes, color=(255, 0, 0, 255), thickness=2, show_index=False): |
|
if boxes is None: |
|
return image_np |
|
|
|
image = copy.deepcopy(image_np) |
|
for idx, box in enumerate(boxes): |
|
x, y, w, h = box |
|
cv2.rectangle(image, (x, y), (w, h), color, thickness) |
|
if show_index: |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
text = str(idx) |
|
textsize = cv2.getTextSize(text, font, 1, 2)[0] |
|
cv2.putText(image, text, (x, y+textsize[1]), font, 1, color, thickness) |
|
|
|
return image |
|
|
|
|
|
def clear_dino_cache(): |
|
dino_model_cache.clear() |
|
gc.collect() |
|
torch_gc() |
|
|
|
|
|
def load_dino_model(dino_checkpoint, dino_install_success): |
|
print(f"Initializing GroundingDINO {dino_checkpoint}") |
|
if dino_checkpoint in dino_model_cache: |
|
dino = dino_model_cache[dino_checkpoint] |
|
if shared.cmd_opts.lowvram: |
|
dino.to(device=device) |
|
else: |
|
clear_dino_cache() |
|
if dino_install_success: |
|
from groundingdino.models import build_model |
|
from groundingdino.util.slconfig import SLConfig |
|
from groundingdino.util.utils import clean_state_dict |
|
else: |
|
from local_groundingdino.models import build_model |
|
from local_groundingdino.util.slconfig import SLConfig |
|
from local_groundingdino.util.utils import clean_state_dict |
|
args = SLConfig.fromfile(dino_model_info[dino_checkpoint]["config"]) |
|
dino = build_model(args) |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
dino_model_info[dino_checkpoint]["url"], dino_model_dir) |
|
dino.load_state_dict(clean_state_dict( |
|
checkpoint['model']), strict=False) |
|
dino.to(device=device) |
|
dino_model_cache[dino_checkpoint] = dino |
|
dino.eval() |
|
return dino |
|
|
|
|
|
def load_dino_image(image_pil, dino_install_success): |
|
if dino_install_success: |
|
import groundingdino.datasets.transforms as T |
|
else: |
|
from local_groundingdino.datasets import transforms as T |
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
if shared.cmd_opts.lowvram: |
|
model.to(cpu) |
|
logits = outputs["pred_logits"].sigmoid()[0] |
|
boxes = outputs["pred_boxes"][0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
|
|
return boxes_filt.cpu() |
|
|
|
|
|
def dino_predict_internal(input_image, dino_model_name, text_prompt, box_threshold): |
|
install_success = install_goundingdino() |
|
print("Running GroundingDINO Inference") |
|
dino_image = load_dino_image(input_image.convert("RGB"), install_success) |
|
dino_model = load_dino_model(dino_model_name, install_success) |
|
install_success = install_success or shared.opts.data.get("sam_use_local_groundingdino", False) |
|
|
|
boxes_filt = get_grounding_output( |
|
dino_model, dino_image, text_prompt, box_threshold |
|
) |
|
|
|
H, W = input_image.size[1], input_image.size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
gc.collect() |
|
torch_gc() |
|
return boxes_filt, install_success |
|
|