Edit model card

Fine-tune datasets

Model Trained Using AutoTrain

  • Problem type: Entity Extraction
  • Model ID: 1595156286
  • CO2 Emissions (in grams): 0.0422

Validation Metrics

  • Loss: 0.012
  • Accuracy: 0.996
  • Precision: 0.000
  • Recall: 0.000
  • F1: 0.000

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286

Or Python API:

from transformers import AutoModelForTokenClassification, AutoTokenizer

model = AutoModelForTokenClassification.from_pretrained("imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)

How to get the idioms:

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

model = AutoModelForTokenClassification.from_pretrained("imranraad/idiom-xlm-roberta")

tokenizer = AutoTokenizer.from_pretrained("imranraad/idiom-xlm-roberta")

pipeline_idioms = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")

text = "Why are you so bent out of shape? - Why are you so upset?"

idioms = pipeline_idioms(text)
for idiom in idioms:
    if idiom['entity_group'] == '1':
        print(idiom['word'])
Downloads last month
186
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.