🤗 HF Repo | ♾️ Colab

Introducing the latest fine-tuned version of Qwen2.5-Coder-14B-Instruct, specifically tailored for SQL code generation. Built on the robust 14-billion parameter Qwen2.5-Coder architecture, this model leverages advanced configurations like bfloat16 precision and a custom quantization setup, optimized for efficient 4-bit computation. With a maximum context window of 32K tokens, this model supports extensive SQL sequences and complex query generation without compromising accuracy or performance.

Our fine-tuning process has enriched this model with domain-specific SQL patterns and nuanced query constructions, making it exceptionally adept at handling real-world SQL requirements, from query creation to debugging and optimization. By combining Qwen2.5's foundational strengths with targeted training on custom SQL data, this model achieves a powerful balance of general-purpose code understanding and SQL-specific precision, making it an ideal tool for developers and data engineers seeking top-tier SQL generation capabilities.

Inference

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

# Import necessary libraries
from unsloth import FastLanguageModel
import torch

# Define the model name and other parameters
model_name = "imsanjoykb/sqlCoder-Qwen2.5-8bit"
max_seq_length = 2048
dtype = None
load_in_4bit = True

# Load the model and tokenizer from Hugging Face
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
)

# Enable faster inference
FastLanguageModel.for_inference(model)

# Define the prompt template
odoo_text2sql_prompt = """Below is an instruction describing a task related to generating a SQL query specifically for Odoo's database structure. The input provides relevant context about Odoo models or data fields from {db_schema}. Write a SQL query that fulfills the given task using Odoo's database schema.

### Instruction:
Generate a SQL query in the context of Odoo to {}

### Input:
{}

### Response:
{}
"""

# Optionally, use a TextStreamer for continuous inference
from transformers import TextStreamer

# Prepare the input text for continuous inference
instruction = ""
input_text = "What is the top profitable product?"
output_text = ""

# Tokenize the input text
inputs = tokenizer(
    [
        odoo_text2sql_prompt.format(instruction, input_text, output_text)
    ],
    return_tensors="pt"
).to("cuda")

# Initialize the TextStreamer
text_streamer = TextStreamer(tokenizer)

# Generate the output using the model with TextStreamer
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=350)

Model Download

Model #Total Params #Active Params Context Length Download
sqlCoder-Qwen2.5-8bit 14B 2.4B 128k 🤗 HuggingFace

Uploaded model

Downloads last month
37
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-generation models for adapter-transformers library.

Model tree for imsanjoykb/sqlCoder-Qwen2.5-8bit

Base model

Qwen/Qwen2.5-32B
Adapter
(20)
this model