t5-english-ner / README.md
imvladikon's picture
Librarian Bot: Add base_model information to model (#1)
73ea1ba
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- private
base_model: t5-large
model-index:
- name: ner-news-t5-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5-Encoder(T5-large model) fine-tuned on very small dataset for token classification
Simple experimental model that was trained in 3 epochs on very small dataset
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification, NerPipeline
model = AutoModelForTokenClassification.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True)
pipe = NerPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
print(pipe("London is the capital city of England and the United Kingdom"))
"""
[{'entity_group': 'LOCATION',
'score': 0.84536326,
'word': 'London',
'start': 0,
'end': 6},
{'entity_group': 'LOCATION',
'score': 0.8957489,
'word': 'England',
'start': 30,
'end': 37},
{'entity_group': 'LOCATION',
'score': 0.73186326,
'word': 'UnitedKingdom',
'start': 46,
'end': 60}]
"""
```
## Usage in spacy
```bash
pip install spacy transformers git+https://github.com/explosion/spacy-huggingface-pipelines -q
```
```python
import spacy
from spacy import displacy
text = "My name is Sarah and I live in London"
nlp = spacy.blank("en")
nlp.add_pipe("hf_token_pipe", config={"model": "imvladikon/t5-english-ner", "kwargs": {"trust_remote_code":True}})
doc = nlp(text)
print(doc.ents)
# (Sarah, London)
```
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the private(en) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1956
- Commercial Item Precision: 0.0
- Commercial Item Recall: 0.0
- Commercial Item F1: 0.0
- Commercial Item Number: 1
- Date Precision: 0.8125
- Date Recall: 0.9286
- Date F1: 0.8667
- Date Number: 14
- Location Precision: 0.7143
- Location Recall: 0.75
- Location F1: 0.7317
- Location Number: 20
- Organization Precision: 0.8588
- Organization Recall: 0.9125
- Organization F1: 0.8848
- Organization Number: 80
- Other Precision: 0.3684
- Other Recall: 0.3333
- Other F1: 0.35
- Other Number: 21
- Person Precision: 0.8182
- Person Recall: 0.9310
- Person F1: 0.8710
- Person Number: 29
- Quantity Precision: 0.8
- Quantity Recall: 0.8571
- Quantity F1: 0.8276
- Quantity Number: 14
- Title Precision: 0.0
- Title Recall: 0.0
- Title F1: 0.0
- Title Number: 7
- Overall Precision: 0.75
- Overall Recall: 0.7903
- Overall F1: 0.7696
- Overall Accuracy: 0.9534
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Commercial Item Precision | Commercial Item Recall | Commercial Item F1 | Commercial Item Number | Date Precision | Date Recall | Date F1 | Date Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Other Precision | Other Recall | Other F1 | Other Number | Person Precision | Person Recall | Person F1 | Person Number | Quantity Precision | Quantity Recall | Quantity F1 | Quantity Number | Title Precision | Title Recall | Title F1 | Title Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:------------:|:----------------:|:-------------:|:---------:|:-------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.8868 | 1.0 | 708 | 0.2725 | 0.0 | 0.0 | 0.0 | 1 | 0.8125 | 0.9286 | 0.8667 | 14 | 0.4167 | 0.75 | 0.5357 | 20 | 0.8272 | 0.8375 | 0.8323 | 80 | 1.0 | 0.0476 | 0.0909 | 21 | 0.8438 | 0.9310 | 0.8852 | 29 | 0.6667 | 0.7143 | 0.6897 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.7348 | 0.7151 | 0.7248 | 0.9446 |
| 0.2984 | 2.0 | 1416 | 0.2121 | 0.0 | 0.0 | 0.0 | 1 | 0.8667 | 0.9286 | 0.8966 | 14 | 0.5 | 0.8 | 0.6154 | 20 | 0.8375 | 0.8375 | 0.8375 | 80 | 0.3077 | 0.1905 | 0.2353 | 21 | 0.8182 | 0.9310 | 0.8710 | 29 | 0.7333 | 0.7857 | 0.7586 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.7077 | 0.7419 | 0.7244 | 0.9481 |
| 0.1729 | 3.0 | 2124 | 0.1956 | 0.0 | 0.0 | 0.0 | 1 | 0.8125 | 0.9286 | 0.8667 | 14 | 0.7143 | 0.75 | 0.7317 | 20 | 0.8588 | 0.9125 | 0.8848 | 80 | 0.3684 | 0.3333 | 0.35 | 21 | 0.8182 | 0.9310 | 0.8710 | 29 | 0.8 | 0.8571 | 0.8276 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.75 | 0.7903 | 0.7696 | 0.9534 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
## WANDB
[training logs and reports](https://wandb.ai/imvladikon/huggingface/runs/uyl6ihl1)