M2-Reasoning / README.md
qingpei's picture
Update README.md
bd45bd6 verified
---
license: mit
datasets:
- AI4Math/MathVista
- MathLLMs/MathVision
- AI4Math/MathVerse
- Racktic/dynamath
- lscpku/LogicVista
- nyu-visionx/CV-Bench
- nyu-visionx/VSI-Bench
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
pipeline_tag: image-text-to-text
---
# M2-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning
πŸ“– [Technical Report]() | πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/M2-Reasoning)| πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/M2-Reasoning)
## Introduction
We introduce M2-Reasoning-7B, a model designed to excel in both general and spatial reasoning. Our approach integrates two key innovations: (1) a novel data pipeline that generates 294.2K high-quality data samples (168K for cold-start fine-tuning and 126.2K for RLVR), which feature logically coherent reasoning trajectories and have undergone comprehensive assessment; and (2) a dynamic multi-task training strategy with step-wise optimization to mitigate conflicts between data, and task-specific rewards for delivering tailored incentive signals. This combination of curated data and advanced training allows M2-Reasoning-7B to set a new state-of-the-art (SOTA) across 8 benchmarks, showcasing superior performance in both general and spatial reasoning domains.
![](assets/teaser.png)
## πŸ“Œ Updates
<!-- - [2025.07.08] πŸ”₯ Our Technical Report is in public on arxiv. -->
- [2025.07.07] πŸ”₯ We release M2-Reasoning on πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/M2-Reasoning) and πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/M2-Reasoning).
## Key Features
- A High-quality Data Construction Pipeline: We design and implement a multi-stage data synthesis and curation pipeline that generates vast amounts of reasoning data.
- A Dynamic Multi-Task Training Strategy: We propose a sophisticated training strategy that effectively handles data heterogeneity. It features step-wise dynamic optimization to mitigate conflicts between different data sources and a task-specific reward formulation to provide tailored incentive signals.
- Unified General and Spatial Reasoning Model: We propose M2-Reasoning-7B, an MLLM uniquely engineered for both abstract and spatial reasoning. Extensive evaluations on 8 distinctbenchmarks demonstrate that, by leveraging our custom data and training pipelines, M2-Reasoning establishes new state-of-the-art (SOTA) results across both general and spatial reasoning domains.
## Evaluation
We conduct a comprehensive evaluation of our models across two key domains: general and spatial
reasoning. Our evaluation utilizes a diverse set of public benchmarks, grouped by the primary
capability they measure:
- General Reasoning (Mathematical & Logical): To evaluate this capability, we employ six benchmarks: MathVista, MathVision, MathVerse, DynaMath, WeMath, and LogicVista.
|Models| MathVista| MathVision| MathVerse| DynaMath| WeMath| LogicVista| Avg. (Ξ”)|
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|***Base-Scale General Models***|
|InternVL3-8B | 70.5| 30.0| 38.5| 25.7 |39.5 |44.5 |41.4|
|InternVL3-9B | 69.0 | 29.3| 37.9 |25.1 |34.8| 49.0 |40.8|
|Qwen2.5-VL-7B |68.1 |25.4 |41.1 |21.8 |36.2| 47.9| 40.1|
|MUG-U-7B | 74.8 |26.1 |35.4 |17.2 |26.5 |39.8| 36.6|
|SAIL-VL-1.6-8B | 74.2 |23.2| 33.4 |14.0 |29.6 |41.4| 36.0|
|***Base-Scale Reasoning Models***|
|WeThink-VL-7B| 71.6 |26.0| 44.2 |24.8 |**48.0** |**51.2**| 44.3 (+4.2)|
|Taichu-VLR-7B | 72.3| 27.1 |46.7 |23.0 |44.0 |48.3 |43.6|
|VLAA-Thinker-7B | 68.0 |26.4| **48.2** |22.4 |41.5 |48.5 |42.5 (+2.4)|
|URSA-8B-PS-GRPO | 67.8 |**31.8** |41.5 |22.4| 38.3 |44.7 |41.1 (+8.2)|
|Ovis2-8B |71.8 |25.9| 42.3 |20.4 |27.2 |39.4| 37.8|
|***Our Models***|
|Base Model |70.2| 25.9| 30.5| 20.2| 27.2| 37.8| 35.5|
|M2-Reasoning-CI-7B| 71.7| 29.2| 42.1| 25.0 |42.8| 46.8 |42.9 (+7.4)|
|M2-Reasoning-7B | **75.0** |31.5| 44.7 |**26.8** |41.8 |50.0 |**45.0 (+9.5)**|
- Spatial Reasoning: We assess this skill using 2 benchmarks: CV-Bench and VSI-Bench
- CV-Bench:
| Models | Count | Relation | Depth | Distance | Avg. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ***Large-Scale Models*** | | | | | |
| GPT-4O | 65.9 | 85.7 | 87.8 | 78.2 | 78.9 |
| Gemini-1.5-pro | 70.4 | 85.2 | 82.4 | 72.8 | 77.4 |
| ***Base-Scale Models*** | | | | | |
| InternVL3-8B| **74.0** | 90.6 | 84.3 | 81.0 | 82.0 |
| Qwen2.5-VL-7B-Instruct | 65.2 | 86.6 | 70.6 | 79.8 | 75.0 |
| LLava-NEXT-Video-7B | 59.3 | 77.0 | 71.3 | 54.7 | 65.2 |
| ***Our Models*** | | | | | |
| M2-Reasoning-7B | 66.6 | **92.8** | **89.3** | **84.3** | **82.3** |
- VSI-Bench:
| | OC | AD| OS|RS |RDs |RDr |RP |AO |Avg. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ***Large-Scale Models*** | | | | | | | | | |
| Gemini-1.5-pro | 56.2 | 30.9 | 64.1 | 43.6 | 51.3 | 46.3 | 36.0 | 34.6 | 45.4 |
| GPT-4O | 46.2 | 5.3 | 43.8 | 38.2 | 37.0 | 41.3 | 31.5 | 28.5 | 34.0 |
| ***Base-Scale Models*** | | | | | | | | | |
| InternVL3-8B | **68.1** | **39.0** | 48.4 | 33.6 | **48.3** | 36.4 | 27.3 | **35.4** | 42.1 |
| Video-R1-7B | - | - | - | - | - | - | - | - | 37.1 |
| Qwen2.5-VL-7B-Instruct| 37.7 | 20.1 | 49.7 | 37.4 | 38.5 | 40.4 | 31.4 | 32.0 | 35.9 |
| LLava-NeXT-Video-7B| 48.5 | 14.0 | 47.8 | 24.2 | 43.5 | 42.4 | **34.0** | 30.6 | 35.6 |
| ***Our Models*** | | | | | | | | | |
| M2-Reasoning-7B | 41.0 | 34.0 | **60.9** | **55.4** | 40.7 | **47.3** | 29.9 | 28.8 | **42.3** |
## Installation
Please download our model following Model Downloads, then you can refer to the following codes to run M2-Reasoning model.
The basic environment is `python=3.10`, `torch=2.6.0+cu124`, `transformers=4.49.0`
## Example Usage
We provide a small example on the usage of this repo. For detailed usage.
``` python
import os
import torch
from transformers import (
AutoProcessor,
AutoTokenizer,
)
import warnings
import argparse
from modeling_bailing_qwen2_5 import Bailing_qwen2_5NativeForConditionalGeneration
from processing_bailing_qwen2_5 import Bailing_qwen2_5Processor
warnings.filterwarnings("ignore")
class BailingMMInfer:
def __init__(self,
model_name_or_path,
device="cuda",
max_pixels=None,
min_pixels=None,
video_max_pixels=768 * 28 * 28,
video_min_pixels=128 * 28 * 28,
generation_config=None
):
super().__init__()
self.model_name_or_path = model_name_or_path
self.device = device
self.device_map = device
self.video_max_pixels = video_max_pixels if video_max_pixels is not None else 768 * 28 * 28
self.video_min_pixels = video_min_pixels if video_min_pixels is not None else 128 * 28 * 28
self.model, self.tokenizer, self.processor = self.load_model_processor()
if max_pixels is not None:
self.processor.max_pixels = max_pixels
if min_pixels is not None:
self.processor.min_pixels = min_pixels
if generation_config is None:
generation_config = {
"num_beams": 1,
"do_sample": True,
"temperature": 0.9
}
self.generation_config = generation_config
def load_model_processor(self):
model = Bailing_qwen2_5NativeForConditionalGeneration.from_pretrained(
self.model_name_or_path,
torch_dtype=torch.bfloat16,
device_map=self.device_map,
_attn_implementation="flash_attention_2"
).eval()
tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, add_bos_token=True, trust_remote_code=True)
processor = Bailing_qwen2_5Processor.from_pretrained(self.model_name_or_path, trust_remote_code=True)
return model, tokenizer, processor
def generate(self, messages, max_new_tokens=512):
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True, use_system=True
)
image_inputs, video_inputs = self.processor.process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
return_tensors="pt",
)
# print(inputs)
print(self.tokenizer.decode(inputs['input_ids'][0]))
inputs = inputs.to(self.device)
for k in inputs.keys():
if k == "pixel_values" or k == "pixel_values_videos":
inputs[k] = inputs[k].to(dtype=torch.bfloat16)
with torch.no_grad():
generated_ids = self.model.generate(
inputs,
max_new_tokens=max_new_tokens,
eos_token_id=self.processor.tokenizer.eos_token_id,
**self.generation_config,
)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
)[0]
return output_text
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default="inclusionAI/M2-Reasoning")
parser.add_argument('--max_pixels', type=int, default=401408)
parser.add_argument('--min_pixels', type=int, default=401408)
parser.add_argument('--max_new_tokens', type=int, default=4096)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_name_or_path = os.path.join(args.input_dir, args.model_name_or_path)
bailing2 = BailingMMInfer(
args.model_name_or_path,
device=device,
max_pixels=args.max_pixels,
min_pixels=args.min_pixels
)
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant. When the user asks a question, your response must include two parts: first, the reasoning process enclosed in <think>...</think> tags, then the final answer enclosed in <answer>...</answer> tags. The critical answer or key result should be placed within \\boxed{}."}]},
{
"role": "user",
"content": [
{"type": "image", "image": "./assets/example1.png"},
{"type": "text", "text": "\nQuestion:\n\nRhombus $QRST$ has an area of 137.9 square meters. If $RT$ is 12.2 meters, find $QS$.\nA. 11.3\nB. 22.4\nC. 22.6\nD. 25.6"},
],
},
]
output_text = bailing2.generate(messages, max_new_tokens=args.max_new_tokens)
print(output_text)
'''
[Output]:
<think>
To find the length of \( QS \) in the rhombus \( QRST \), we can use the formula for the area of a rhombus, which is given by:
\[
\text{Area} = \frac{1}{2} \times d_1 \times d_2
\]
where \( d_1 \) and \( d_2 \) are the lengths of the diagonals. In this problem, we are given:
- The area of the rhombus is 137.9 square meters.
- One of the diagonals, \( RT \), is 12.2 meters.
We need to find the length of the other diagonal, \( QS \).
Let's denote:
- \( d_1 = RT = 12.2 \) meters
- \( d_2 = QS \)
Substitute the known values into the area formula:
\[
137.9 = \frac{1}{2} \times 12.2 \times QS
\]
To solve for \( QS \), first multiply both sides by 2 to eliminate the fraction:
\[
275.8 = 12.2 \times QS
\]
Next, divide both sides by 12.2:
\[
QS = \frac{275.8}{12.2}
\]
Now, perform the division:
\[
QS \approx 22.6
\]
So, the length of \( QS \) is approximately 22.6 meters.
Looking at the options provided:
A. 11.3
B. 22.4
C. 22.6
D. 25.6
The correct answer is C. 22.6.
</think>
<answer>
\boxed{C. 22.6}
</answer><|im_end|>
'''
```
## License and Legal Disclaimer
This code repository is licensed under the MIT License, and the Legal Disclaimer is located in the LEGAL.md file under the project's root directory.
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{M2reasoning2025,
title = {M2-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning},
author = {Inclusion AI},
year = {2025},
archivePrefix = {arXiv},
}
```