image/jpeg

TinyUltra-4x1.1B-Base-Alpha

TinyUltra-4x1.1B-Base-Alpha is a Mixure of Experts (MoE) made with the following models using MergeKit:

Modelfile/Prompt format

SYSTEM You are a TinyUltra, helpful and lovely AI assistant.

TEMPLATE <|system|> {{ .System }}</s> <|user|> {{ .Prompt }}</s> <|assistant|>

PARAMETER stop <|system|>
PARAMETER stop <|user|>
PARAMETER stop <|assistant|>
PARAMETER stop </s>

🧩 Configuration

base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
gate_mode: hidden
dtype: float16
experts:
  - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
    positive_prompts:
    - "Help me debug this code."
    - "Rewrite this function in Python."
    - "Optimize this C# script."
    - "Implement this feature using JavaScript."
    - "Convert this HTML structure into a more efficient design."
    - "Assist me with writing a program that"
  - source_model: vihangd/DopeyTinyLlama-1.1B-v1
    positive_prompts:
    - "How do you"
    - "Explain the concept of"
    - "Give an overview of"
    - "Compare and contrast between"
    - "Provide information about"
    - "Help me understand"
    - "Summarize"
    - "Make a recommendation on"
    - "Answer this question"
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts:
    - "Write a program to solve this problem"
    - "Modify this function to improve its performance"
    - "Refactor this code to enhance readability"
    - "Create a custom function for this specific use case"
    - "Optimize this algorithm to reduce computational complexity"
    - "Implement this feature by extending existing codebase"
    - "Integrate this API call into the application"
    - "Help me troubleshoot and fix this bug"
    - "Review and test this code snippet before deployment"
    - "Analyze this error log to identify potential issues"
    - "Generate a set of unit tests for this module"
    - "Evaluate different approaches to solving this problem"
    - "Do a web search for"
    - "Use the plugin to"
  - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
    positive_prompts:
    - "add these numbers"
    - "whats 2+2"
    - "subtraction"
    - "division"
    - "multiplication"
    - "addition"
    - "I need help with a math problem"
    - "Solve for x"
    - "Add these two numbers together: 4 + 3 = 7"
    - "Multiply 5 by 6: 5 * 6 = 30"
    - "Divide 8 by 2: 8 / 2 = 4"
    - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
    - "Calculate the square root of 16: sqrt(16) = 4"
    - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
    - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
    - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
    - "Graph the line y = 2x + 3"
    - "Approximate pi to three decimal places: 3.142"
    - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
    - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
    - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
    - "Solve the system of equations Ax = b: x = [-5, 10]"
    - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gmonsoon/TinyUltra-4x1.1B-Base-Alpha"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

GGUF: https://huggingface.co/indischepartij/TinyUltra-4x1.1B-Base-Alpha-GGUF

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 37.94
AI2 Reasoning Challenge (25-Shot) 34.90
HellaSwag (10-Shot) 61.42
MMLU (5-Shot) 25.42
TruthfulQA (0-shot) 37.59
Winogrande (5-shot) 65.75
GSM8k (5-shot) 2.58
Downloads last month
185
Safetensors
Model size
3.38B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for indischepartij/TinyUltra-4x1.1B-Base-Alpha

Quantizations
1 model

Collection including indischepartij/TinyUltra-4x1.1B-Base-Alpha

Evaluation results