|
--- |
|
tags: |
|
- mteb |
|
model-index: |
|
- name: stella-base-zh |
|
results: |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 49.34825050234731 |
|
- type: cos_sim_spearman |
|
value: 51.74726338428475 |
|
- type: euclidean_pearson |
|
value: 50.14955499038012 |
|
- type: euclidean_spearman |
|
value: 51.74730359287025 |
|
- type: manhattan_pearson |
|
value: 50.016703594410615 |
|
- type: manhattan_spearman |
|
value: 51.63936364317057 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.26876163587667 |
|
- type: cos_sim_spearman |
|
value: 52.818410137444374 |
|
- type: euclidean_pearson |
|
value: 55.24925286208574 |
|
- type: euclidean_spearman |
|
value: 52.818404507964686 |
|
- type: manhattan_pearson |
|
value: 55.21236977375391 |
|
- type: manhattan_spearman |
|
value: 52.80289117015117 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 40.245999999999995 |
|
- type: f1 |
|
value: 38.55443674287747 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 61.553652835163255 |
|
- type: cos_sim_spearman |
|
value: 63.29065064027392 |
|
- type: euclidean_pearson |
|
value: 62.000329557485 |
|
- type: euclidean_spearman |
|
value: 63.290650638944825 |
|
- type: manhattan_pearson |
|
value: 62.02786936153664 |
|
- type: manhattan_spearman |
|
value: 63.32720383880146 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 39.71224230526474 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 36.55705201882987 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 85.69418720521168 |
|
- type: mrr |
|
value: 87.97444444444446 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 86.46348358482606 |
|
- type: mrr |
|
value: 88.81428571428572 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.721 |
|
- type: map_at_10 |
|
value: 35.428 |
|
- type: map_at_100 |
|
value: 37.438 |
|
- type: map_at_1000 |
|
value: 37.557 |
|
- type: map_at_3 |
|
value: 31.589 |
|
- type: map_at_5 |
|
value: 33.647 |
|
- type: mrr_at_1 |
|
value: 36.709 |
|
- type: mrr_at_10 |
|
value: 44.590999999999994 |
|
- type: mrr_at_100 |
|
value: 45.684999999999995 |
|
- type: mrr_at_1000 |
|
value: 45.732 |
|
- type: mrr_at_3 |
|
value: 42.331 |
|
- type: mrr_at_5 |
|
value: 43.532 |
|
- type: ndcg_at_1 |
|
value: 36.709 |
|
- type: ndcg_at_10 |
|
value: 41.858000000000004 |
|
- type: ndcg_at_100 |
|
value: 49.775999999999996 |
|
- type: ndcg_at_1000 |
|
value: 51.844 |
|
- type: ndcg_at_3 |
|
value: 37.067 |
|
- type: ndcg_at_5 |
|
value: 38.875 |
|
- type: precision_at_1 |
|
value: 36.709 |
|
- type: precision_at_10 |
|
value: 9.411999999999999 |
|
- type: precision_at_100 |
|
value: 1.5709999999999997 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 21.154999999999998 |
|
- type: precision_at_5 |
|
value: 15.184000000000001 |
|
- type: recall_at_1 |
|
value: 23.721 |
|
- type: recall_at_10 |
|
value: 51.714000000000006 |
|
- type: recall_at_100 |
|
value: 84.60600000000001 |
|
- type: recall_at_1000 |
|
value: 98.414 |
|
- type: recall_at_3 |
|
value: 37.091 |
|
- type: recall_at_5 |
|
value: 42.978 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 73.61395069152135 |
|
- type: cos_sim_ap |
|
value: 81.65459344597652 |
|
- type: cos_sim_f1 |
|
value: 75.66718995290425 |
|
- type: cos_sim_precision |
|
value: 68.4918529746116 |
|
- type: cos_sim_recall |
|
value: 84.5218611176058 |
|
- type: dot_accuracy |
|
value: 73.61395069152135 |
|
- type: dot_ap |
|
value: 81.64596407363373 |
|
- type: dot_f1 |
|
value: 75.66718995290425 |
|
- type: dot_precision |
|
value: 68.4918529746116 |
|
- type: dot_recall |
|
value: 84.5218611176058 |
|
- type: euclidean_accuracy |
|
value: 73.61395069152135 |
|
- type: euclidean_ap |
|
value: 81.6546013070452 |
|
- type: euclidean_f1 |
|
value: 75.66718995290425 |
|
- type: euclidean_precision |
|
value: 68.4918529746116 |
|
- type: euclidean_recall |
|
value: 84.5218611176058 |
|
- type: manhattan_accuracy |
|
value: 73.51773902585688 |
|
- type: manhattan_ap |
|
value: 81.57345451483191 |
|
- type: manhattan_f1 |
|
value: 75.7393958530681 |
|
- type: manhattan_precision |
|
value: 68.87442572741195 |
|
- type: manhattan_recall |
|
value: 84.12438625204582 |
|
- type: max_accuracy |
|
value: 73.61395069152135 |
|
- type: max_ap |
|
value: 81.6546013070452 |
|
- type: max_f1 |
|
value: 75.7393958530681 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 73.551 |
|
- type: map_at_10 |
|
value: 81.513 |
|
- type: map_at_100 |
|
value: 81.734 |
|
- type: map_at_1000 |
|
value: 81.73700000000001 |
|
- type: map_at_3 |
|
value: 80.27300000000001 |
|
- type: map_at_5 |
|
value: 81.017 |
|
- type: mrr_at_1 |
|
value: 73.762 |
|
- type: mrr_at_10 |
|
value: 81.479 |
|
- type: mrr_at_100 |
|
value: 81.699 |
|
- type: mrr_at_1000 |
|
value: 81.702 |
|
- type: mrr_at_3 |
|
value: 80.33 |
|
- type: mrr_at_5 |
|
value: 80.999 |
|
- type: ndcg_at_1 |
|
value: 73.867 |
|
- type: ndcg_at_10 |
|
value: 84.711 |
|
- type: ndcg_at_100 |
|
value: 85.714 |
|
- type: ndcg_at_1000 |
|
value: 85.803 |
|
- type: ndcg_at_3 |
|
value: 82.244 |
|
- type: ndcg_at_5 |
|
value: 83.514 |
|
- type: precision_at_1 |
|
value: 73.867 |
|
- type: precision_at_10 |
|
value: 9.557 |
|
- type: precision_at_100 |
|
value: 1.001 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 29.505 |
|
- type: precision_at_5 |
|
value: 18.377 |
|
- type: recall_at_1 |
|
value: 73.551 |
|
- type: recall_at_10 |
|
value: 94.521 |
|
- type: recall_at_100 |
|
value: 99.05199999999999 |
|
- type: recall_at_1000 |
|
value: 99.789 |
|
- type: recall_at_3 |
|
value: 87.777 |
|
- type: recall_at_5 |
|
value: 90.83200000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.230999999999998 |
|
- type: map_at_10 |
|
value: 80.635 |
|
- type: map_at_100 |
|
value: 83.393 |
|
- type: map_at_1000 |
|
value: 83.431 |
|
- type: map_at_3 |
|
value: 55.717000000000006 |
|
- type: map_at_5 |
|
value: 70.387 |
|
- type: mrr_at_1 |
|
value: 90.75 |
|
- type: mrr_at_10 |
|
value: 93.569 |
|
- type: mrr_at_100 |
|
value: 93.648 |
|
- type: mrr_at_1000 |
|
value: 93.65 |
|
- type: mrr_at_3 |
|
value: 93.27499999999999 |
|
- type: mrr_at_5 |
|
value: 93.482 |
|
- type: ndcg_at_1 |
|
value: 90.75 |
|
- type: ndcg_at_10 |
|
value: 87.801 |
|
- type: ndcg_at_100 |
|
value: 90.44 |
|
- type: ndcg_at_1000 |
|
value: 90.776 |
|
- type: ndcg_at_3 |
|
value: 86.556 |
|
- type: ndcg_at_5 |
|
value: 85.468 |
|
- type: precision_at_1 |
|
value: 90.75 |
|
- type: precision_at_10 |
|
value: 42.08 |
|
- type: precision_at_100 |
|
value: 4.816 |
|
- type: precision_at_1000 |
|
value: 0.49 |
|
- type: precision_at_3 |
|
value: 77.60000000000001 |
|
- type: precision_at_5 |
|
value: 65.49000000000001 |
|
- type: recall_at_1 |
|
value: 26.230999999999998 |
|
- type: recall_at_10 |
|
value: 89.00200000000001 |
|
- type: recall_at_100 |
|
value: 97.866 |
|
- type: recall_at_1000 |
|
value: 99.569 |
|
- type: recall_at_3 |
|
value: 57.778 |
|
- type: recall_at_5 |
|
value: 74.895 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 47.599999999999994 |
|
- type: map_at_10 |
|
value: 57.296 |
|
- type: map_at_100 |
|
value: 58.011 |
|
- type: map_at_1000 |
|
value: 58.028 |
|
- type: map_at_3 |
|
value: 54.300000000000004 |
|
- type: map_at_5 |
|
value: 56.21000000000001 |
|
- type: mrr_at_1 |
|
value: 47.599999999999994 |
|
- type: mrr_at_10 |
|
value: 57.296 |
|
- type: mrr_at_100 |
|
value: 58.011 |
|
- type: mrr_at_1000 |
|
value: 58.028 |
|
- type: mrr_at_3 |
|
value: 54.300000000000004 |
|
- type: mrr_at_5 |
|
value: 56.21000000000001 |
|
- type: ndcg_at_1 |
|
value: 47.599999999999994 |
|
- type: ndcg_at_10 |
|
value: 62.458000000000006 |
|
- type: ndcg_at_100 |
|
value: 65.589 |
|
- type: ndcg_at_1000 |
|
value: 66.059 |
|
- type: ndcg_at_3 |
|
value: 56.364000000000004 |
|
- type: ndcg_at_5 |
|
value: 59.815 |
|
- type: precision_at_1 |
|
value: 47.599999999999994 |
|
- type: precision_at_10 |
|
value: 7.89 |
|
- type: precision_at_100 |
|
value: 0.928 |
|
- type: precision_at_1000 |
|
value: 0.097 |
|
- type: precision_at_3 |
|
value: 20.767 |
|
- type: precision_at_5 |
|
value: 14.14 |
|
- type: recall_at_1 |
|
value: 47.599999999999994 |
|
- type: recall_at_10 |
|
value: 78.9 |
|
- type: recall_at_100 |
|
value: 92.80000000000001 |
|
- type: recall_at_1000 |
|
value: 96.6 |
|
- type: recall_at_3 |
|
value: 62.3 |
|
- type: recall_at_5 |
|
value: 70.7 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 47.46440938822624 |
|
- type: f1 |
|
value: 34.587004997852524 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 84.9906191369606 |
|
- type: ap |
|
value: 52.31309789960497 |
|
- type: f1 |
|
value: 79.55556102310072 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.80872804636063 |
|
- type: cos_sim_spearman |
|
value: 75.83290476813391 |
|
- type: euclidean_pearson |
|
value: 74.09865882324753 |
|
- type: euclidean_spearman |
|
value: 75.83290698376118 |
|
- type: manhattan_pearson |
|
value: 74.0616102379577 |
|
- type: manhattan_spearman |
|
value: 75.81278969865738 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.029 |
|
- type: map_at_10 |
|
value: 74.39 |
|
- type: map_at_100 |
|
value: 74.734 |
|
- type: map_at_1000 |
|
value: 74.74300000000001 |
|
- type: map_at_3 |
|
value: 72.52 |
|
- type: map_at_5 |
|
value: 73.724 |
|
- type: mrr_at_1 |
|
value: 67.192 |
|
- type: mrr_at_10 |
|
value: 74.95100000000001 |
|
- type: mrr_at_100 |
|
value: 75.25500000000001 |
|
- type: mrr_at_1000 |
|
value: 75.263 |
|
- type: mrr_at_3 |
|
value: 73.307 |
|
- type: mrr_at_5 |
|
value: 74.355 |
|
- type: ndcg_at_1 |
|
value: 67.192 |
|
- type: ndcg_at_10 |
|
value: 78.22200000000001 |
|
- type: ndcg_at_100 |
|
value: 79.76299999999999 |
|
- type: ndcg_at_1000 |
|
value: 80.018 |
|
- type: ndcg_at_3 |
|
value: 74.656 |
|
- type: ndcg_at_5 |
|
value: 76.697 |
|
- type: precision_at_1 |
|
value: 67.192 |
|
- type: precision_at_10 |
|
value: 9.513 |
|
- type: precision_at_100 |
|
value: 1.027 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 28.204 |
|
- type: precision_at_5 |
|
value: 18.009 |
|
- type: recall_at_1 |
|
value: 65.029 |
|
- type: recall_at_10 |
|
value: 89.462 |
|
- type: recall_at_100 |
|
value: 96.418 |
|
- type: recall_at_1000 |
|
value: 98.409 |
|
- type: recall_at_3 |
|
value: 80.029 |
|
- type: recall_at_5 |
|
value: 84.882 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.56489576328177 |
|
- type: f1 |
|
value: 63.37174551232159 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 71.4862138533961 |
|
- type: f1 |
|
value: 71.171374964826 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 48.6 |
|
- type: map_at_10 |
|
value: 54.92700000000001 |
|
- type: map_at_100 |
|
value: 55.528 |
|
- type: map_at_1000 |
|
value: 55.584 |
|
- type: map_at_3 |
|
value: 53.55 |
|
- type: map_at_5 |
|
value: 54.379999999999995 |
|
- type: mrr_at_1 |
|
value: 48.8 |
|
- type: mrr_at_10 |
|
value: 55.028999999999996 |
|
- type: mrr_at_100 |
|
value: 55.629 |
|
- type: mrr_at_1000 |
|
value: 55.684999999999995 |
|
- type: mrr_at_3 |
|
value: 53.65 |
|
- type: mrr_at_5 |
|
value: 54.48 |
|
- type: ndcg_at_1 |
|
value: 48.6 |
|
- type: ndcg_at_10 |
|
value: 57.965999999999994 |
|
- type: ndcg_at_100 |
|
value: 61.043000000000006 |
|
- type: ndcg_at_1000 |
|
value: 62.624 |
|
- type: ndcg_at_3 |
|
value: 55.132000000000005 |
|
- type: ndcg_at_5 |
|
value: 56.621 |
|
- type: precision_at_1 |
|
value: 48.6 |
|
- type: precision_at_10 |
|
value: 6.75 |
|
- type: precision_at_100 |
|
value: 0.823 |
|
- type: precision_at_1000 |
|
value: 0.095 |
|
- type: precision_at_3 |
|
value: 19.900000000000002 |
|
- type: precision_at_5 |
|
value: 12.659999999999998 |
|
- type: recall_at_1 |
|
value: 48.6 |
|
- type: recall_at_10 |
|
value: 67.5 |
|
- type: recall_at_100 |
|
value: 82.3 |
|
- type: recall_at_1000 |
|
value: 94.89999999999999 |
|
- type: recall_at_3 |
|
value: 59.699999999999996 |
|
- type: recall_at_5 |
|
value: 63.3 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 29.196130696027474 |
|
- type: mrr |
|
value: 28.43730158730159 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 72.48333333333333 |
|
- type: f1 |
|
value: 72.00258522357558 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 65.13264753654575 |
|
- type: cos_sim_ap |
|
value: 70.52831936800807 |
|
- type: cos_sim_f1 |
|
value: 71.35353535353535 |
|
- type: cos_sim_precision |
|
value: 57.787958115183244 |
|
- type: cos_sim_recall |
|
value: 93.24181626187962 |
|
- type: dot_accuracy |
|
value: 65.13264753654575 |
|
- type: dot_ap |
|
value: 70.52828597418102 |
|
- type: dot_f1 |
|
value: 71.35353535353535 |
|
- type: dot_precision |
|
value: 57.787958115183244 |
|
- type: dot_recall |
|
value: 93.24181626187962 |
|
- type: euclidean_accuracy |
|
value: 65.13264753654575 |
|
- type: euclidean_ap |
|
value: 70.52828597418102 |
|
- type: euclidean_f1 |
|
value: 71.35353535353535 |
|
- type: euclidean_precision |
|
value: 57.787958115183244 |
|
- type: euclidean_recall |
|
value: 93.24181626187962 |
|
- type: manhattan_accuracy |
|
value: 64.8077964266378 |
|
- type: manhattan_ap |
|
value: 70.39954487476643 |
|
- type: manhattan_f1 |
|
value: 71.2270200940573 |
|
- type: manhattan_precision |
|
value: 59.84195402298851 |
|
- type: manhattan_recall |
|
value: 87.96198521647307 |
|
- type: max_accuracy |
|
value: 65.13264753654575 |
|
- type: max_ap |
|
value: 70.52831936800807 |
|
- type: max_f1 |
|
value: 71.35353535353535 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 90.34 |
|
- type: ap |
|
value: 87.79622626876444 |
|
- type: f1 |
|
value: 90.32357430051181 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.9175458105215 |
|
- type: cos_sim_spearman |
|
value: 32.024302491613014 |
|
- type: euclidean_pearson |
|
value: 33.01780461609846 |
|
- type: euclidean_spearman |
|
value: 32.024301939183374 |
|
- type: manhattan_pearson |
|
value: 32.94874897942371 |
|
- type: manhattan_spearman |
|
value: 31.902283210178012 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.288219964332754 |
|
- type: cos_sim_spearman |
|
value: 36.46838652731507 |
|
- type: euclidean_pearson |
|
value: 35.11414028811812 |
|
- type: euclidean_spearman |
|
value: 36.468386523814104 |
|
- type: manhattan_pearson |
|
value: 35.20922826624027 |
|
- type: manhattan_spearman |
|
value: 36.55349180906185 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.18186265837434 |
|
- type: cos_sim_spearman |
|
value: 67.52365178443915 |
|
- type: euclidean_pearson |
|
value: 65.46342439169497 |
|
- type: euclidean_spearman |
|
value: 67.52365178443915 |
|
- type: manhattan_pearson |
|
value: 67.3476263677961 |
|
- type: manhattan_spearman |
|
value: 69.09476240936812 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.53864906415339 |
|
- type: cos_sim_spearman |
|
value: 72.63037820118355 |
|
- type: euclidean_pearson |
|
value: 72.42255276991672 |
|
- type: euclidean_spearman |
|
value: 72.63037820118355 |
|
- type: manhattan_pearson |
|
value: 72.36324244766192 |
|
- type: manhattan_spearman |
|
value: 72.58609772740323 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 66.45708148192449 |
|
- type: mrr |
|
value: 76.08372693469173 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.436999999999998 |
|
- type: map_at_10 |
|
value: 74.516 |
|
- type: map_at_100 |
|
value: 78.29899999999999 |
|
- type: map_at_1000 |
|
value: 78.372 |
|
- type: map_at_3 |
|
value: 52.217 |
|
- type: map_at_5 |
|
value: 64.24 |
|
- type: mrr_at_1 |
|
value: 88.23 |
|
- type: mrr_at_10 |
|
value: 91.06400000000001 |
|
- type: mrr_at_100 |
|
value: 91.18 |
|
- type: mrr_at_1000 |
|
value: 91.184 |
|
- type: mrr_at_3 |
|
value: 90.582 |
|
- type: mrr_at_5 |
|
value: 90.88300000000001 |
|
- type: ndcg_at_1 |
|
value: 88.23 |
|
- type: ndcg_at_10 |
|
value: 82.511 |
|
- type: ndcg_at_100 |
|
value: 86.531 |
|
- type: ndcg_at_1000 |
|
value: 87.244 |
|
- type: ndcg_at_3 |
|
value: 83.987 |
|
- type: ndcg_at_5 |
|
value: 82.46900000000001 |
|
- type: precision_at_1 |
|
value: 88.23 |
|
- type: precision_at_10 |
|
value: 41.245 |
|
- type: precision_at_100 |
|
value: 4.987 |
|
- type: precision_at_1000 |
|
value: 0.515 |
|
- type: precision_at_3 |
|
value: 73.675 |
|
- type: precision_at_5 |
|
value: 61.71 |
|
- type: recall_at_1 |
|
value: 26.436999999999998 |
|
- type: recall_at_10 |
|
value: 81.547 |
|
- type: recall_at_100 |
|
value: 94.548 |
|
- type: recall_at_1000 |
|
value: 98.197 |
|
- type: recall_at_3 |
|
value: 54.056000000000004 |
|
- type: recall_at_5 |
|
value: 67.93 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 50.784 |
|
- type: f1 |
|
value: 48.89471168071432 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 63.19039347990962 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 55.357378578603225 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 58.8 |
|
- type: map_at_10 |
|
value: 68.623 |
|
- type: map_at_100 |
|
value: 69.074 |
|
- type: map_at_1000 |
|
value: 69.085 |
|
- type: map_at_3 |
|
value: 66.767 |
|
- type: map_at_5 |
|
value: 67.972 |
|
- type: mrr_at_1 |
|
value: 58.699999999999996 |
|
- type: mrr_at_10 |
|
value: 68.573 |
|
- type: mrr_at_100 |
|
value: 69.024 |
|
- type: mrr_at_1000 |
|
value: 69.035 |
|
- type: mrr_at_3 |
|
value: 66.717 |
|
- type: mrr_at_5 |
|
value: 67.92200000000001 |
|
- type: ndcg_at_1 |
|
value: 58.8 |
|
- type: ndcg_at_10 |
|
value: 73.038 |
|
- type: ndcg_at_100 |
|
value: 75.16199999999999 |
|
- type: ndcg_at_1000 |
|
value: 75.422 |
|
- type: ndcg_at_3 |
|
value: 69.297 |
|
- type: ndcg_at_5 |
|
value: 71.475 |
|
- type: precision_at_1 |
|
value: 58.8 |
|
- type: precision_at_10 |
|
value: 8.67 |
|
- type: precision_at_100 |
|
value: 0.9650000000000001 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 25.533 |
|
- type: precision_at_5 |
|
value: 16.38 |
|
- type: recall_at_1 |
|
value: 58.8 |
|
- type: recall_at_10 |
|
value: 86.7 |
|
- type: recall_at_100 |
|
value: 96.5 |
|
- type: recall_at_1000 |
|
value: 98.5 |
|
- type: recall_at_3 |
|
value: 76.6 |
|
- type: recall_at_5 |
|
value: 81.89999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 86.61999999999999 |
|
- type: ap |
|
value: 69.93149123197975 |
|
- type: f1 |
|
value: 84.99670691559903 |
|
--- |
|
|
|
**新闻 | News** |
|
|
|
**[2024-04-06]** 开源[puff](https://huggingface.co/infgrad/puff-base-v1)系列模型,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语**。 |
|
|
|
**[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度**。 |
|
|
|
**[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。 |
|
|
|
**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**。 |
|
|
|
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。 |
|
|
|
**[2023-09-11]** 开源stella-base-zh和stella-large-zh |
|
|
|
欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见! |
|
|
|
## stella model |
|
|
|
stella是一个通用的文本编码模型,主要有以下模型: |
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? | |
|
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:| |
|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No | |
|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No | |
|
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No | |
|
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes | |
|
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes | |
|
|
|
完整的训练思路和训练过程已记录在[博客1](https://zhuanlan.zhihu.com/p/655322183)和[博客2](https://zhuanlan.zhihu.com/p/662209559),欢迎阅读讨论。 |
|
|
|
**训练数据:** |
|
|
|
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本 |
|
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据 |
|
|
|
**训练方法:** |
|
|
|
1. 对比学习损失函数 |
|
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例) |
|
3. EWC(Elastic Weights Consolidation)[4] |
|
4. cosent loss[5] |
|
5. 每一种类型的数据一个迭代器,分别计算loss进行更新 |
|
|
|
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction( |
|
比如piccolo的`查询:`, `结果:`, e5的`query:`和`passage:`)。 |
|
|
|
**初始权重:**\ |
|
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position |
|
embedding使用层次分解位置编码[7]进行初始化。\ |
|
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。 |
|
|
|
stella is a general-purpose text encoder, which mainly includes the following models: |
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? | |
|
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:| |
|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No | |
|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No | |
|
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No | |
|
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes | |
|
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes | |
|
|
|
The training data mainly includes: |
|
|
|
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater |
|
than 512. |
|
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM. |
|
|
|
The loss functions mainly include: |
|
|
|
1. Contrastive learning loss function |
|
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives) |
|
3. EWC (Elastic Weights Consolidation) |
|
4. cosent loss |
|
|
|
Model weight initialization:\ |
|
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the |
|
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding. |
|
|
|
Training strategy:\ |
|
One iterator for each type of data, separately calculating the loss. |
|
|
|
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation. |
|
|
|
## Metric |
|
|
|
#### C-MTEB leaderboard (Chinese) |
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) | |
|
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:| |
|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 | |
|
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 | |
|
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 | |
|
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 | |
|
|
|
#### MTEB leaderboard (English) |
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Classification (12) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | |
|
|:-----------------:|:---------------:|:---------:|:---------------:|:------------:|:-------------------:|:---------------:|:-----------------------:|:-------------:|:--------------:|:--------:|:------------------:| |
|
| stella-base-en-v2 | 0.2 | 768 | 512 | 62.61 | 75.28 | 44.9 | 86.45 | 58.77 | 50.1 | 83.02 | 32.52 | |
|
|
|
#### Reproduce our results |
|
|
|
**C-MTEB:** |
|
|
|
```python |
|
import torch |
|
import numpy as np |
|
from typing import List |
|
from mteb import MTEB |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
class FastTextEncoder(): |
|
def __init__(self, model_name): |
|
self.model = SentenceTransformer(model_name).cuda().half().eval() |
|
self.model.max_seq_length = 512 |
|
|
|
def encode( |
|
self, |
|
input_texts: List[str], |
|
*args, |
|
**kwargs |
|
): |
|
new_sens = list(set(input_texts)) |
|
new_sens.sort(key=lambda x: len(x), reverse=True) |
|
vecs = self.model.encode( |
|
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256 |
|
).astype(np.float32) |
|
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)} |
|
vecs = vecs[[sen2arrid[sen] for sen in input_texts]] |
|
torch.cuda.empty_cache() |
|
return vecs |
|
|
|
|
|
if __name__ == '__main__': |
|
model_name = "infgrad/stella-base-zh-v2" |
|
output_folder = "zh_mteb_results/stella-base-zh-v2" |
|
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks] |
|
model = FastTextEncoder(model_name) |
|
for task in task_names: |
|
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder) |
|
|
|
``` |
|
|
|
**MTEB:** |
|
|
|
You can use official script to reproduce our result. [scripts/run_mteb_english.py](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py) |
|
|
|
#### Evaluation for long text |
|
|
|
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的, |
|
更致命的是那些长度大于512的文本,其重点都在前半部分 |
|
这里以CMRC2018的数据为例说明这个问题: |
|
|
|
``` |
|
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏? |
|
|
|
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推...... |
|
``` |
|
|
|
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\ |
|
简言之,现有数据集的2个问题:\ |
|
1)长度大于512的过少\ |
|
2)即便大于512,对于检索而言也只需要前512的文本内容\ |
|
导致**无法准确评估模型的长文本编码能力。** |
|
|
|
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是: |
|
|
|
- CMRC2018,通用百科 |
|
- CAIL,法律阅读理解 |
|
- DRCD,繁体百科,已转简体 |
|
- Military,军工问答 |
|
- Squad,英文阅读理解,已转中文 |
|
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9] |
|
|
|
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。 |
|
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing |
|
|
|
评测指标为Recall@5, 结果如下: |
|
|
|
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh | |
|
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:| |
|
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 | |
|
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 | |
|
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 | |
|
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 | |
|
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 | |
|
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 | |
|
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** | |
|
|
|
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。 |
|
|
|
## Usage |
|
|
|
#### stella 中文系列模型 |
|
|
|
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致** |
|
,即在检索重排任务上给query和passage加上`查询: `和`结果: `。对于短短匹配不需要做任何操作。 |
|
|
|
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。 |
|
|
|
stella中文系列模型均使用mean pooling做为文本向量。 |
|
|
|
在sentence-transformer库中的使用方法: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
sentences = ["数据1", "数据2"] |
|
model = SentenceTransformer('infgrad/stella-base-zh-v2') |
|
print(model.max_seq_length) |
|
embeddings_1 = model.encode(sentences, normalize_embeddings=True) |
|
embeddings_2 = model.encode(sentences, normalize_embeddings=True) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
print(similarity) |
|
``` |
|
|
|
直接使用transformers库: |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
from sklearn.preprocessing import normalize |
|
|
|
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2') |
|
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2') |
|
sentences = ["数据1", "数据ABCDEFGH"] |
|
batch_data = tokenizer( |
|
batch_text_or_text_pairs=sentences, |
|
padding="longest", |
|
return_tensors="pt", |
|
max_length=1024, |
|
truncation=True, |
|
) |
|
attention_mask = batch_data["attention_mask"] |
|
model_output = model(**batch_data) |
|
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
vectors = normalize(vectors, norm="l2", axis=1, ) |
|
print(vectors.shape) # 2,768 |
|
``` |
|
|
|
#### stella models for English |
|
|
|
**Using Sentence-Transformers:** |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
sentences = ["one car come", "one car go"] |
|
model = SentenceTransformer('infgrad/stella-base-en-v2') |
|
print(model.max_seq_length) |
|
embeddings_1 = model.encode(sentences, normalize_embeddings=True) |
|
embeddings_2 = model.encode(sentences, normalize_embeddings=True) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
print(similarity) |
|
``` |
|
|
|
**Using HuggingFace Transformers:** |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
from sklearn.preprocessing import normalize |
|
|
|
model = AutoModel.from_pretrained('infgrad/stella-base-en-v2') |
|
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-en-v2') |
|
sentences = ["one car come", "one car go"] |
|
batch_data = tokenizer( |
|
batch_text_or_text_pairs=sentences, |
|
padding="longest", |
|
return_tensors="pt", |
|
max_length=512, |
|
truncation=True, |
|
) |
|
attention_mask = batch_data["attention_mask"] |
|
model_output = model(**batch_data) |
|
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
vectors = normalize(vectors, norm="l2", axis=1, ) |
|
print(vectors.shape) # 2,768 |
|
``` |
|
|
|
## Training Detail |
|
|
|
**硬件:** 单卡A100-80GB |
|
|
|
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing |
|
|
|
**学习率:** 1e-6 |
|
|
|
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例 |
|
|
|
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。 |
|
|
|
## ToDoList |
|
|
|
**评测的稳定性:** |
|
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。 |
|
|
|
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。 |
|
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。 |
|
|
|
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere, |
|
它们的效果均比不上BM25。 |
|
|
|
## Reference |
|
|
|
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab |
|
2. https://github.com/wangyuxinwhy/uniem |
|
3. https://github.com/CLUEbenchmark/SimCLUE |
|
4. https://arxiv.org/abs/1612.00796 |
|
5. https://kexue.fm/archives/8847 |
|
6. https://huggingface.co/sensenova/piccolo-base-zh |
|
7. https://kexue.fm/archives/7947 |
|
8. https://github.com/FlagOpen/FlagEmbedding |
|
9. https://github.com/THUDM/LongBench |
|
|
|
|
|
|