metadata
license: apache-2.0
language: as
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning
- as
- robust-speech-event
datasets:
- common_voice
model-index:
- name: XLS-R-300M - Assamese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: as
metrics:
- name: Test WER
type: wer
value: 72.64
- name: Test CER
type: cer
value: 27.35
wav2vec2-large-xls-r-300m-assamese
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_7_0 dataset. It achieves the following results on the evaluation set:
- WER: 0.7954545454545454
- CER: 0.32341269841269843
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
To compute the evaluation parameters
cd wav2vec2-large-xls-r-300m-odia; python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config or --split test --log_outputs
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-4
- train_batch_size: 16
- eval_batch_size: 8
- seed: not given
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 400
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.584065 | NA | 400 | 1.584065 | 0.915512 |
1.658865 | Na | 800 | 1.658865 | 0.805096 |
1.882352 | NA | 1200 | 1.882352 | 0.820742 |
1.881240 | NA | 1600 | 1.881240 | 0.810907 |
2.159748 | NA | 2000 | 2.159748 | 0.804202 |
1.992871 | NA | 2400 | 1.992871 | 0.803308 |
2.201436 | NA | 2800 | 2.201436 | 0.802861 |
2.165218 | NA | 3200 | 2.165218 | 0.793920 |
2.253643 | NA | 3600 | 2.253643 | 0.796603 |
2.265880 | NA | 4000 | 2.265880 | 0.790344 |
2.293935 | NA | 4400 | 2.293935 | 0.797050 |
2.288851 | NA | 4800 | 2.288851 | 0.784086 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3