anton-l's picture
anton-l HF staff
Upload README.md
bce836a
metadata
language:
  - lv
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - hf-asr-leaderboard
  - lv
  - model_for_talk
  - mozilla-foundation/common_voice_7_0
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_7_0
model-index:
  - name: XLS-R-300M - Latvian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 16.977
          - name: Test CER
            type: cer
            value: 4.23
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 45.247
          - name: Test CER
            type: cer
            value: 16.924
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 56.16

wav2vec2-large-xls-r-300m-latvian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - LV dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1892
  • Wer: 0.1698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4235 12.82 2000 0.4475 0.4551
0.9383 25.64 4000 0.2235 0.2328
0.8359 38.46 6000 0.2004 0.2098
0.7633 51.28 8000 0.1960 0.1882
0.7001 64.1 10000 0.1902 0.1809
0.652 76.92 12000 0.1979 0.1775
0.6025 89.74 14000 0.1866 0.1696

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0