anton-l's picture
anton-l HF staff
Upload README.md
00fd196
metadata
language:
  - lt
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - generated_from_trainer
  - lt
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_7_0
model-index:
  - name: XLS-R-300M - Lithuanian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: lt
        metrics:
          - name: Test WER
            type: wer
            value: 24.859
          - name: Test CER
            type: cer
            value: 4.764

wav2vec2-large-xls-r-300m-lithuanian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - LT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1722
  • Wer: 0.2486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6837 8.0 2000 0.6649 0.7515
1.1105 16.0 4000 0.2386 0.3436
1.0069 24.0 6000 0.2008 0.2968
0.9417 32.0 8000 0.1915 0.2774
0.887 40.0 10000 0.1819 0.2616
0.8563 48.0 12000 0.1729 0.2475

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0