Mghao
Update README.md
1a081a4
|
raw
history blame
7.8 kB
metadata
library_name: transformers
base_model: meta-llama/Llama-3.1-70B-Instruct
datasets:
  - infly/INF-ORM-Preference-Magnitude-80K
pipeline_tag: text-classification

INF Outcome Reward Model

Introduction

INF-ORM-Llama3.1-70B is the outcome reward model roughly built on the Llama-3.1-70B-Instruct architecture and trained with the dataset INF-ORM-Preference-Magnitude-80K.

Note: Train Details are coming soon!

RewardBench Leaderboard

We evaluate our model on RewardBench using the official test script locally. As of December 2024, INF-ORM-Llama3.1-70B ranks first on the RewardBench leaderboard.

Rank Model Model Type Score Chat Chat Hard Safety Reasoning
1 infly/INF-ORM-Llama3.1-70B Custom Classifier 95.2 96.9 91.0 93.8 99.1
2 Skywork/Skywork-Reward-Gemma-2-27B-v0.2 Seq. Classifier 94.3 96.1 89.9 93.0 98.1
3 nvidia/Llama-3.1-Nemotron-70B-Reward Custom Classifier 94.1 97.5 85.7 95.1 98.1
4 Skywork/Skywork-Reward-Gemma-2-27B Seq. Classifier 93.8 95.8 91.4 91.9 96.1
5 SF-Foundation/TextEval-Llama3.1-70B Generative 93.5 94.1 90.1 93.2 96.4
6 meta-metrics/MetaMetrics-RM-v1.0 Custom Classifier 93.4 98.3 86.4 90.8 98.2
7 Skywork/Skywork-Critic-Llama-3.1-70B Generative 93.3 96.6 87.9 93.1 95.5
8 Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 Seq. Classifier 93.1 94.7 88.4 92.7 96.7
9 nicolinho/QRM-Llama3.1-8B Seq. Classifier 93.1 94.4 89.7 92.3 95.8
10 LxzGordon/URM-LLaMa-3.1-8B Seq. Classifier 92.9 95.5 88.2 91.1 97.0

Demo Code

We provide example usage of the Skywork reward model series below. Below is an example of obtaining the reward scores of two conversations.

from typing import List, Optional, Union

import torch
import torch.nn as nn
from transformers import LlamaPreTrainedModel, LlamaModel, PreTrainedTokenizerFast
from transformers.modeling_outputs import SequenceClassifierOutputWithPast

class INFORMForSequenceClassification(LlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = LlamaModel(config)
        self.score = nn.Sequential(
            nn.Linear(config.hidden_size, config.hidden_size),
            nn.ReLU(),
            nn.Linear(config.hidden_size, self.num_labels)
        )
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

# Load model
model_name = "infly/INF-ORM-Llama3.1-70B"
orm = INFORMForSequenceClassification.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="flash_attention_2",
    num_labels=1,
)

# Load tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
conv1 = [ { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa, then he bought 3 more oranges. Finally, he divided all the oranges equally among himself and his 4 friends. How many oranges does each person get?", "role": "user" }, { "content": "Tom has 20 oranges. He gave 5 oranges to Lisa. 20 - 5 = 15. Tom now has 15 oranges. Tom bought 3 more oranges. 15 + 3 = 18. Tom now has 18 oranges. Tom divides the 18 oranges equally among himself and his 4 friends (a total of 5 people). 18 ÷ 5 = 3.6 oranges. Each person gets 3.6 oranges.", "role": "assistant" } ]
conv2= [ { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa, then he bought 3 more oranges. Finally, he divided all the oranges equally among himself and his 4 friends. How many oranges does each person get?", "role": "user" }, { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa. 20 - 5 = 15. Tom now has 15 oranges. Tom bought 3 more oranges. 15 + 3 = 18. Tom now has 18 oranges. Tom divides the 18 oranges equally among his 4 friends (a total of 4 people). 18 ÷ 4 = 4.5 oranges. Each person gets 4.5 oranges.", "role": "assistant" } ]
conv1_tokenized = tokenizer.apply_chat_template(conv1, tokenize=True, return_tensors="pt").to("cuda")
conv2_tokenized = tokenizer.apply_chat_template(conv2, tokenize=True, return_tensors="pt").to("cuda")

# Inference
with torch.no_grad():
    score1 = orm(conv1_tokenized).logits[0][0].item()
    score2 = orm(conv2_tokenized).logits[0][0].item()
print(f"Score for response 1: {score1}")
print(f"Score for response 2: {score2}")

# Output:

# Score for response 1: 4.96875
# Score for response 2: 2.890625

Declaration and License Agreement

Declaration

License Agreement

Contact

If you have any questions, please feel free to reach us at [email protected].

Citation