See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d778b6b213e10026_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d778b6b213e10026_train_data.json
type:
field_input: context
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: infogep/808a6e92-a8a8-4fce-a8ba-0fe1fb0fa0e8
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/d778b6b213e10026_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ac3fbae1-18ab-431e-bf64-c4cfae3e3134
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ac3fbae1-18ab-431e-bf64-c4cfae3e3134
warmup_steps: 5
weight_decay: 0.0
xformers_attention: true
808a6e92-a8a8-4fce-a8ba-0fe1fb0fa0e8
This model is a fine-tuned version of Qwen/Qwen2-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1104
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.7403 |
0.2011 | 0.0006 | 5 | 1.7286 |
1.2771 | 0.0011 | 10 | 1.5541 |
1.3929 | 0.0017 | 15 | 1.2981 |
1.2744 | 0.0023 | 20 | 1.1668 |
1.4062 | 0.0028 | 25 | 1.1190 |
1.2905 | 0.0034 | 30 | 1.1104 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for infogep/808a6e92-a8a8-4fce-a8ba-0fe1fb0fa0e8
Base model
Qwen/Qwen2-1.5B-Instruct