Configuration Parsing
Warning:
In UNKNOWN_FILENAME: "diffusers._class_name" must be a string
InteractDiffusion Diffuser Implementation
Project Page | Paper | WebUI | Demo | Video | Diffuser | Colab
How to Use
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"interactdiffusion/diffusers-v1-2",
trust_remote_code=True,
variant="fp16", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
images = pipeline(
prompt="a person is feeding a cat",
interactdiffusion_subject_phrases=["person"],
interactdiffusion_object_phrases=["cat"],
interactdiffusion_action_phrases=["feeding"],
interactdiffusion_subject_boxes=[[0.0332, 0.1660, 0.3359, 0.7305]],
interactdiffusion_object_boxes=[[0.2891, 0.4766, 0.6680, 0.7930]],
interactdiffusion_scheduled_sampling_beta=1,
output_type="pil",
num_inference_steps=50,
).images
images[0].save('out.jpg')
For more information, please check the project homepage.
Citation
@inproceedings{hoe2023interactdiffusion,
title={InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models},
author={Jiun Tian Hoe and Xudong Jiang and Chee Seng Chan and Yap-Peng Tan and Weipeng Hu},
year={2024},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
Acknowledgement
This work is developed based on the codebase of GLIGEN and LDM.
- Downloads last month
- 72