Diffusers
Safetensors
Configuration Parsing Warning: In UNKNOWN_FILENAME: "diffusers._class_name" must be a string

InteractDiffusion Diffuser Implementation

Project Page | Paper | WebUI | Demo | Video | Diffuser | Colab

How to Use

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained(
    "interactdiffusion/diffusers-v1-2",
    trust_remote_code=True,
    variant="fp16", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")

images = pipeline(
    prompt="a person is feeding a cat",
    interactdiffusion_subject_phrases=["person"],
    interactdiffusion_object_phrases=["cat"],
    interactdiffusion_action_phrases=["feeding"],
    interactdiffusion_subject_boxes=[[0.0332, 0.1660, 0.3359, 0.7305]],
    interactdiffusion_object_boxes=[[0.2891, 0.4766, 0.6680, 0.7930]],
    interactdiffusion_scheduled_sampling_beta=1,
    output_type="pil",
    num_inference_steps=50,
    ).images

images[0].save('out.jpg')

For more information, please check the project homepage.

Citation

@inproceedings{hoe2023interactdiffusion,
      title={InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models}, 
      author={Jiun Tian Hoe and Xudong Jiang and Chee Seng Chan and Yap-Peng Tan and Weipeng Hu},
      year={2024},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}

Acknowledgement

This work is developed based on the codebase of GLIGEN and LDM.

Downloads last month
72
Inference API
Unable to determine this model’s pipeline type. Check the docs .