InternLM-Math's picture
Update README.md
9e24972 verified
|
raw
history blame
3.2 kB
metadata
pipeline_tag: text-generation
license: other
language:
  - en
tags:
  - math

InternLM-Step-Prover

InternLM-Math HOT

A state-of-the-art LEAN4 step prover.

💻 Github 📊Dataset 📖 Paper

InternLM-Step-Prover is a 7B language model trained on Lean-Github and multiple sythesis datasets. InternLM-Step-Prover achieves state-of-the-art performances on MiniF2F, ProofNet, and Putnam math benchmarks, showing its formal math proving ability in multiple domains.

Dialogue Example

### Input Example
DECL MyNat.mul_pow
GOAL a b n : N
⊢ (a * b) ^ n = a ^ n * b ^ n
### Output Example
PROOFSTEP induction n with t Ht

Performance

MiniF2F

Method Model size Pass miniF2F-valid miniF2F-test
Whole-Proof Generation Methods
GPT-4-turbo 0409 - 64 25.4% 23.0%
DeepSeekMath-Base 7B 128 25.4% 27.5%
DeepSeek-Prover 7B 1 - 30.0%
64 - 46.3%
128 - 46.3%
8192 - 48.8%
65536 - 50.0%
cumulative 60.2% 52.0%
TheoremLlama - cumulative 36.5% 33.6%
Tree Search Methods
COPRA (GPT-3.5) - 1 - 9.0%
COPRA (GPT-4) - 1 - 26.6%
DSP(Isabelle) 540B 100 42.6% 38.9%
Proof Artifact Co-Training 837M 1 23.9% 24.6%
8 29.3% 29.2%
ReProver 229M 1 - 25.0%
Llemma 7B 1 26.2% 26.2%
Llemma 34B 1 27.9% 25.8%
Curriculum Learning 837M 1 33.6% 29.6%
8 41.2% 34.5%
64 47.3% 36.6%
Hypertree Proof Search 600M cumulative 58.6% -
64 - 41.0%
Lean-STaR 7B 64 - 46.3%
InternLM2-Math 7B 1 29.9% 30.3%
InternLM2-Math-Plus 7B 1 - 43.4%
InternLM2-Step-Prover 7B 1 59.8% 48.8%
InternLM2-Step-Prover 7B 64 63.9% 54.5%

Proofnet & Putnam

Method Model size Pass result
ProofNet benchmark
ReProver 229M 1 13.8%
InternLM2-Step-Prover 7B 1 18.1%
Putnam benchmark
GPT-4 - 10 1/640
COPRA (GPT-4) - 10 1/640
DSP(Isabelle) 540B 10 4/640
ReProver 229M 1 0/640
InternLM2-Step-Prover 7B 1 5/640

Citation and Tech Report

@misc{wu2024leangithubcompilinggithublean,
      title={LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover}, 
      author={Zijian Wu and Jiayu Wang and Dahua Lin and Kai Chen},
      year={2024},
      eprint={2407.17227},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2407.17227}, 
}