|
--- |
|
tags: |
|
- mmeb |
|
- transformers |
|
language: |
|
- en |
|
- ar |
|
- zh |
|
- ko |
|
- ru |
|
- pl |
|
- tr |
|
- fr |
|
library_name: transformers |
|
license: mit |
|
pipeline_tag: image-feature-extraction |
|
--- |
|
|
|
## mmE5-mllama-11b-instruct |
|
|
|
[mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://arxiv.org/abs/2502.08468.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2025 |
|
|
|
This model is trained based on [Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision). |
|
|
|
[Github](https://github.com/haon-chen/mmE5) |
|
|
|
## Train/Eval Data |
|
- Train data: https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic |
|
- Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval, https://huggingface.co/datasets/Haon-Chen/XTD-10 |
|
|
|
## Experimental Results |
|
Our model achieves SOTA performance on MMEB benchmark. |
|
<img width="900" alt="abs" src="https://raw.githubusercontent.com/haon-chen/mmE5/refs/heads/main/figures//exp_result.jpg"> |
|
|
|
## Usage |
|
|
|
Below is an example we adapted from [VLM2Vec](https://huggingface.co/TIGER-Lab/VLM2Vec-Full). |
|
|
|
First clone github |
|
```bash |
|
git clone https://github.com/haon-chen/mmE5.git |
|
pip install -r requirements.txt |
|
``` |
|
|
|
Then you can enter the directory to run the following command. |
|
```python |
|
from src.model import MMEBModel |
|
from src.arguments import ModelArguments |
|
from src.utils import load_processor |
|
import torch |
|
from transformers import HfArgumentParser, AutoProcessor |
|
from PIL import Image |
|
import numpy as np |
|
model_args = ModelArguments( |
|
model_name='intfloat/mmE5-mllama-11b-instruct', |
|
pooling='last', |
|
normalize=True, |
|
model_backbone='mllama') |
|
processor = load_processor(model_args) |
|
model = MMEBModel.load(model_args) |
|
model.eval() |
|
model = model.to('cuda', dtype=torch.bfloat16) |
|
# Image + Text -> Text |
|
inputs = processor(text='<|image|><|begin_of_text|> Represent the given image with the following question: What is in the image', images=[Image.open( |
|
'figures/example.jpg')], return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
string = 'A cat and a dog' |
|
inputs = processor(text=string, return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## A cat and a dog = tensor([[0.3965]], device='cuda:0', dtype=torch.bfloat16) |
|
string = 'A cat and a tiger' |
|
inputs = processor(text=string, return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## A cat and a tiger = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16) |
|
# Text -> Image |
|
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a dog.', return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
string = '<|image|><|begin_of_text|> Represent the given image.' |
|
inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16) |
|
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
string = '<|image|><|begin_of_text|> Represent the given image.' |
|
inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt") |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16) |
|
``` |
|
|
|
## Citation |
|
``` |
|
@article{chen2025mmE5, |
|
title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data}, |
|
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, |
|
journal={arXiv preprint arXiv:2502.08468}, |
|
year={2025} |
|
} |
|
``` |