File size: 43,216 Bytes
8892830 d5a0df7 8892830 d5a0df7 8892830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:56041
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What is the significance of the tables 6.1.6.2.5-1 and 6.1.6.2.6-1
in the context of the Namf_Communication Service API?
sentences:
- The 'notifId' attribute in the PolicyDataSubscription type serves as a Notification
Correlation ID assigned by the NF service consumer. It is included when the 'ConditionalSubscriptionwithPartialNotification'
or the 'ConditionalSubscriptionWithExcludeNotification' feature is supported.
This ID is used to correlate notifications with the specific subscription request,
ensuring that the NF service consumer can track and manage notifications effectively.
- The 'sessRuleReports' attribute in the 'ErrorReport' type is specifically used
to report failures related to session rules, whereas the 'ruleReports' attribute
reports failures related to PCC rules. 'sessRuleReports' contains an array of
'SessionRuleReport' objects, which provide details about the session rule failures.
Like 'ruleReports', it is optional and can have one or more entries (cardinality
1..N).
- Tables 6.1.6.2.5-1 and 6.1.6.2.6-1 are significant in the Namf_Communication Service
API as they provide the definitions for the types 'AssignEbiData' and 'AssignedEbiData',
respectively. These tables outline the structure, attributes, and possibly the
constraints or rules associated with these data types, which are essential for
understanding and implementing the API's functionality related to EBI assignment
and management.
- source_sentence: What document defines the basic principles for online charging,
and where is this information referenced?
sentences:
- The UDM (Unified Data Management) returns the Ranging and Sidelink Positioning
Subscription Data for the UE (User Equipment) identified by the supi (Subscription
Permanent Identifier). This data is retrieved using the GET method, which supports
the URI query parameters outlined in table 6.1.3.37.3.1-1.
- The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF
(Session Management Function) to notify its consumers about the status of an SM
(Session Management) context related to a PDU (Packet Data Unit) Session. In the
context of I-SMF (Intermediate SMF) context transfer, this service operation is
used to indicate the transfer of the SM context to a new I-SMF or SMF set. It
also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio
Access Network) parameters tuning in the AMF (Access and Mobility Management Function).
Additionally, it can report DDN (Downlink Data Notification) failures and provide
target DNAI (Data Network Access Identifier) information for the current or next
PDU session.
- The basic principles for online charging are defined in TS 32.240 [1]. This information
is referenced in section 5.2.1 of the document, which is part of the '5.2 Online
charging scenario' chapter.
- source_sentence: What are the possible values for the 'ReportingLevel' enumeration,
and what do they indicate?
sentences:
- If protected User Plane (UP) messages reach the SN before the SN has received
the SN Counter value in the SN Reconfiguration Complete message, the SN chooses
the first unused KSN key of the UE to establish the security association. This
ensures that communication can proceed securely even if the SN Counter value has
not yet been received. Once the SN Counter value is received, the SN verifies
it to ensure there is no KSN mismatch.
- 'The ''ReportingLevel'' enumeration has three possible values: ''SER_ID_LEVEL'',
''RAT_GR_LEVEL'', and ''SPON_CON_LEVEL''. ''SER_ID_LEVEL'' indicates that usage
should be reported at the service ID and rating group combination level. ''RAT_GR_LEVEL''
indicates that usage should be reported at the rating group level. ''SPON_CON_LEVEL''
indicates that usage should be reported at the sponsor identity and rating group
combination level. These levels help in categorizing and reporting usage data
based on different granularities.'
- Structured data types in the Nudr_GroupIDmap Service API are more complex than
simple data types. While simple data types represent single values like integers
or strings, structured data types are composed of multiple simple data types or
other structured data types, forming a more complex data structure. For example,
a structured data type might represent a user profile containing fields for name,
age, and address, each of which could be a simple data type. This allows for the
representation of more intricate and hierarchical data within the API.
- source_sentence: What is the purpose of the Intermediate Spending Limit Report Request
procedure described in the document?
sentences:
- The Resource URI variables defined in table 6.1.3.8.2-1 for the 'sm-data' resource
serve to dynamically construct the URI based on specific parameters. These variables
include {apiRoot}, <apiVersion>, and {supi}. The {apiRoot} variable specifies
the base URL of the API, <apiVersion> indicates the version of the API to be used,
and {supi} represents the Subscription Permanent Identifier, which is used to
uniquely identify the subscriber. These variables ensure that the URI is correctly
formatted and points to the appropriate resource for the given subscriber and
API version.
- The purpose of the Intermediate Spending Limit Report Request procedure is to
allow the PCF (Policy Control Function) to request the status of additional policy
counters available at the CHF (Charging Function) or to remove the request for
the status of policy counters. The PCF can modify the list of subscribed policy
counters based on its policy decisions, and the CHF responds by providing the
policy counter status, optionally including pending statuses and their activation
times, for the requested policy counters.
- When ABC online charging is employed, the TDF uses Debit / Reserve Units Request[Initial],
update, or termination to convey charging information related to the detected
application traffic. The OCS responds with Debit / Reserve Units Response, which
includes quotas for rating groups or instructions on handling the application
traffic (e.g., terminate, continue, reroute). The TDF must request a quota before
service delivery. If only certain quotas are authorized by the OCS (e.g., due
to insufficient credit), the rating groups without authorized quotas are handled
according to the received Result Code value. The quota supervision mechanism is
further described in TS 32.299 [50].
- source_sentence: What types of data structures are supported by the GET request
body on the resource described in table 5.2.11.3.4-2, and how do they influence
the request?
sentences:
- In Direct Communication mode, the NF Service consumer can subscribe to status
change notifications of NF instances from the NRF. If the NF Service consumer
is notified by the NRF or detects by itself (e.g., through a lack of response
to a request) that the NF producer instance is no longer available, it selects
another available NF producer instance within the same NF Set. In Indirect Communication
mode, the SCP or NF Service consumer may also subscribe to status change notifications
from the NRF and select another NF producer instance within the same NF Set if
the original instance serving the UE becomes unavailable. The specific implementation
details of how the SCP detects the unavailability of an NF producer instance are
left to the implementation.
- The data structures supported by the GET request body on the resource are detailed
in table 5.2.11.3.4-2. These structures define the format and content of the data
that can be sent in the request body. They might include fields such as 'filterCriteria',
'sortOrder', or 'pagination', which influence how the server processes the request
and returns the appropriate data.
- 'The specific triggers on the Ro interface that can lead to the termination of
the IMS service include: 1) Reception of an unsuccessful Operation Result different
from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response
message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE
within the multiple units operation in the Debit/Reserve Units Response message
when only one instance of the multiple units operation field is used. 3) Execution
of the termination action procedure as defined in TS 32.299 when only one instance
of the Multiple Unit Operation field is used. 4) Execution of the failure handling
procedures when the Failure Action is set to ''Terminate'' or ''Retry & Terminate''.
5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE_base_3gpp-qa-v2_Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8347103013864849
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9628129405256866
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9806391748898128
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9927196159954319
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8347103013864849
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32093764684189546
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1961278349779626
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09927196159954321
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8347103013864849
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9628129405256866
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9806391748898128
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9927196159954319
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9235193716202091
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9002603606826465
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9006611894428589
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8341214467978801
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9630270694669973
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.980835459752681
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9925947074463339
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8341214467978801
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32100902315566576
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19616709195053625
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09925947074463341
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8341214467978801
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9630270694669973
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.980835459752681
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9925947074463339
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9232781516394674
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8999735171216805
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9003855301087177
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8326047001302618
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9624382148783927
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9801930729287486
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9922913581128102
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8326047001302618
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3208127382927975
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19603861458574973
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09922913581128105
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8326047001302618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9624382148783927
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9801930729287486
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9922913581128102
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9223721780180253
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.898869719250338
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8993021227310489
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8294462982459271
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9610642208383148
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9796399064970289
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.991720347602648
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8294462982459271
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3203547402794382
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19592798129940583
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09917203476026483
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8294462982459271
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9610642208383148
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9796399064970289
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.991720347602648
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9204835891487085
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8965493659262566
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.897020544909686
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.8210595813779198
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9574775610713585
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9771595795935119
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9906497028960939
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8210595813779198
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3191591870237861
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19543191591870243
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09906497028960942
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8210595813779198
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9574775610713585
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9771595795935119
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9906497028960939
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9158816707476002
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8908051588080549
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8913320555914594
name: Cosine Map@100
---
# BGE_base_3gpp-qa-v2_Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iris49/3gpp-embedding-model-v0")
# Run inference
sentences = [
'What types of data structures are supported by the GET request body on the resource described in table 5.2.11.3.4-2, and how do they influence the request?',
"The data structures supported by the GET request body on the resource are detailed in table 5.2.11.3.4-2. These structures define the format and content of the data that can be sent in the request body. They might include fields such as 'filterCriteria', 'sortOrder', or 'pagination', which influence how the server processes the request and returns the appropriate data.",
"The specific triggers on the Ro interface that can lead to the termination of the IMS service include: 1) Reception of an unsuccessful Operation Result different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE within the multiple units operation in the Debit/Reserve Units Response message when only one instance of the multiple units operation field is used. 3) Execution of the termination action procedure as defined in TS 32.299 when only one instance of the Multiple Unit Operation field is used. 4) Execution of the failure handling procedures when the Failure Action is set to 'Terminate' or 'Retry & Terminate'. 5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
| cosine_accuracy@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
| cosine_accuracy@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
| cosine_accuracy@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
| cosine_precision@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
| cosine_precision@3 | 0.3209 | 0.321 | 0.3208 | 0.3204 | 0.3192 |
| cosine_precision@5 | 0.1961 | 0.1962 | 0.196 | 0.1959 | 0.1954 |
| cosine_precision@10 | 0.0993 | 0.0993 | 0.0992 | 0.0992 | 0.0991 |
| cosine_recall@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
| cosine_recall@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
| cosine_recall@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
| cosine_recall@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
| **cosine_ndcg@10** | **0.9235** | **0.9233** | **0.9224** | **0.9205** | **0.9159** |
| cosine_mrr@10 | 0.9003 | 0.9 | 0.8989 | 0.8965 | 0.8908 |
| cosine_map@100 | 0.9007 | 0.9004 | 0.8993 | 0.897 | 0.8913 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 56,041 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 15 tokens</li><li>mean: 30.56 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 42 tokens</li><li>mean: 109.65 tokens</li><li>max: 298 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What does the 'dataStatProps' attribute represent in the 'AnalyticsMetadataInfo' type, and what is its data type?</code> | <code>The 'dataStatProps' attribute in the 'AnalyticsMetadataInfo' type represents a list of dataset statistical properties of the data used to generate the analytics. It is defined as an optional attribute with a data type of 'array(DatasetStatisticalProperty)' and a cardinality of 1..N, meaning it can contain one or more elements.</code> |
| <code>Why is it important to have standardized methods for resource management in the Nudm_SubscriberDataManagement Service API?</code> | <code>Standardized methods for resource management in the Nudm_SubscriberDataManagement Service API are important because they ensure uniformity, predictability, and compatibility across different implementations and systems. This standardization facilitates seamless integration, reduces errors, and enhances the efficiency of managing subscriber data, which is critical for maintaining reliable communication services.</code> |
| <code>What is the purpose of the Nsmf_PDUSession_SMContextStatusNotify service operation in the context of I-SMF context transfer?</code> | <code>The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF (Session Management Function) to notify its consumers about the status of an SM (Session Management) context related to a PDU (Packet Data Unit) Session. In the context of I-SMF (Intermediate SMF) context transfer, this service operation is used to indicate the transfer of the SM context to a new I-SMF or SMF set. It also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio Access Network) parameters tuning in the AMF (Access and Mobility Management Function). Additionally, it can report DDN (Downlink Data Notification) failures and provide target DNAI (Data Network Access Identifier) information for the current or next PDU session.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.0913 | 10 | 1.4273 | - | - | - | - | - |
| 0.1826 | 20 | 0.5399 | - | - | - | - | - |
| 0.2740 | 30 | 0.1252 | - | - | - | - | - |
| 0.3653 | 40 | 0.0625 | - | - | - | - | - |
| 0.4566 | 50 | 0.0507 | - | - | - | - | - |
| 0.5479 | 60 | 0.0366 | - | - | - | - | - |
| 0.6393 | 70 | 0.029 | - | - | - | - | - |
| 0.7306 | 80 | 0.0239 | - | - | - | - | - |
| 0.8219 | 90 | 0.0252 | - | - | - | - | - |
| 0.9132 | 100 | 0.0237 | - | - | - | - | - |
| 0.9954 | 109 | - | 0.9199 | 0.9195 | 0.9180 | 0.9150 | 0.9081 |
| 1.0046 | 110 | 0.026 | - | - | - | - | - |
| 1.0959 | 120 | 0.017 | - | - | - | - | - |
| 1.1872 | 130 | 0.02 | - | - | - | - | - |
| 1.2785 | 140 | 0.0125 | - | - | - | - | - |
| 1.3699 | 150 | 0.0134 | - | - | - | - | - |
| 1.4612 | 160 | 0.0128 | - | - | - | - | - |
| 1.5525 | 170 | 0.0123 | - | - | - | - | - |
| 1.6438 | 180 | 0.0097 | - | - | - | - | - |
| 1.7352 | 190 | 0.0101 | - | - | - | - | - |
| 1.8265 | 200 | 0.0124 | - | - | - | - | - |
| 1.9178 | 210 | 0.0116 | - | - | - | - | - |
| 2.0 | 219 | - | 0.9220 | 0.9216 | 0.9206 | 0.9184 | 0.9130 |
| 2.0091 | 220 | 0.012 | - | - | - | - | - |
| 2.1005 | 230 | 0.0111 | - | - | - | - | - |
| 2.1918 | 240 | 0.0101 | - | - | - | - | - |
| 2.2831 | 250 | 0.0101 | - | - | - | - | - |
| 2.3744 | 260 | 0.009 | - | - | - | - | - |
| 2.4658 | 270 | 0.0103 | - | - | - | - | - |
| 2.5571 | 280 | 0.009 | - | - | - | - | - |
| 2.6484 | 290 | 0.0083 | - | - | - | - | - |
| 2.7397 | 300 | 0.0076 | - | - | - | - | - |
| 2.8311 | 310 | 0.0093 | - | - | - | - | - |
| 2.9224 | 320 | 0.0104 | - | - | - | - | - |
| 2.9954 | 328 | - | 0.9234 | 0.9230 | 0.9221 | 0.9201 | 0.9156 |
| 3.0137 | 330 | 0.0104 | - | - | - | - | - |
| 3.1050 | 340 | 0.0089 | - | - | - | - | - |
| 3.1963 | 350 | 0.0084 | - | - | - | - | - |
| 3.2877 | 360 | 0.0082 | - | - | - | - | - |
| 3.3790 | 370 | 0.0089 | - | - | - | - | - |
| 3.4703 | 380 | 0.0083 | - | - | - | - | - |
| 3.5616 | 390 | 0.0061 | - | - | - | - | - |
| 3.6530 | 400 | 0.0065 | - | - | - | - | - |
| 3.7443 | 410 | 0.0063 | - | - | - | - | - |
| 3.8356 | 420 | 0.0084 | - | - | - | - | - |
| 3.9269 | 430 | 0.0083 | - | - | - | - | - |
| **3.9817** | **436** | **-** | **0.9235** | **0.9233** | **0.9224** | **0.9205** | **0.9159** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |