File size: 43,216 Bytes
8892830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a0df7
8892830
d5a0df7
8892830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:56041
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What is the significance of the tables 6.1.6.2.5-1 and 6.1.6.2.6-1
    in the context of the Namf_Communication Service API?
  sentences:
  - The 'notifId' attribute in the PolicyDataSubscription type serves as a Notification
    Correlation ID assigned by the NF service consumer. It is included when the 'ConditionalSubscriptionwithPartialNotification'
    or the 'ConditionalSubscriptionWithExcludeNotification' feature is supported.
    This ID is used to correlate notifications with the specific subscription request,
    ensuring that the NF service consumer can track and manage notifications effectively.
  - The 'sessRuleReports' attribute in the 'ErrorReport' type is specifically used
    to report failures related to session rules, whereas the 'ruleReports' attribute
    reports failures related to PCC rules. 'sessRuleReports' contains an array of
    'SessionRuleReport' objects, which provide details about the session rule failures.
    Like 'ruleReports', it is optional and can have one or more entries (cardinality
    1..N).
  - Tables 6.1.6.2.5-1 and 6.1.6.2.6-1 are significant in the Namf_Communication Service
    API as they provide the definitions for the types 'AssignEbiData' and 'AssignedEbiData',
    respectively. These tables outline the structure, attributes, and possibly the
    constraints or rules associated with these data types, which are essential for
    understanding and implementing the API's functionality related to EBI assignment
    and management.
- source_sentence: What document defines the basic principles for online charging,
    and where is this information referenced?
  sentences:
  - The UDM (Unified Data Management) returns the Ranging and Sidelink Positioning
    Subscription Data for the UE (User Equipment) identified by the supi (Subscription
    Permanent Identifier). This data is retrieved using the GET method, which supports
    the URI query parameters outlined in table 6.1.3.37.3.1-1.
  - The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF
    (Session Management Function) to notify its consumers about the status of an SM
    (Session Management) context related to a PDU (Packet Data Unit) Session. In the
    context of I-SMF (Intermediate SMF) context transfer, this service operation is
    used to indicate the transfer of the SM context to a new I-SMF or SMF set. It
    also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio
    Access Network) parameters tuning in the AMF (Access and Mobility Management Function).
    Additionally, it can report DDN (Downlink Data Notification) failures and provide
    target DNAI (Data Network Access Identifier) information for the current or next
    PDU session.
  - The basic principles for online charging are defined in TS 32.240 [1]. This information
    is referenced in section 5.2.1 of the document, which is part of the '5.2 Online
    charging scenario' chapter.
- source_sentence: What are the possible values for the 'ReportingLevel' enumeration,
    and what do they indicate?
  sentences:
  - If protected User Plane (UP) messages reach the SN before the SN has received
    the SN Counter value in the SN Reconfiguration Complete message, the SN chooses
    the first unused KSN key of the UE to establish the security association. This
    ensures that communication can proceed securely even if the SN Counter value has
    not yet been received. Once the SN Counter value is received, the SN verifies
    it to ensure there is no KSN mismatch.
  - 'The ''ReportingLevel'' enumeration has three possible values: ''SER_ID_LEVEL'',
    ''RAT_GR_LEVEL'', and ''SPON_CON_LEVEL''. ''SER_ID_LEVEL'' indicates that usage
    should be reported at the service ID and rating group combination level. ''RAT_GR_LEVEL''
    indicates that usage should be reported at the rating group level. ''SPON_CON_LEVEL''
    indicates that usage should be reported at the sponsor identity and rating group
    combination level. These levels help in categorizing and reporting usage data
    based on different granularities.'
  - Structured data types in the Nudr_GroupIDmap Service API are more complex than
    simple data types. While simple data types represent single values like integers
    or strings, structured data types are composed of multiple simple data types or
    other structured data types, forming a more complex data structure. For example,
    a structured data type might represent a user profile containing fields for name,
    age, and address, each of which could be a simple data type. This allows for the
    representation of more intricate and hierarchical data within the API.
- source_sentence: What is the purpose of the Intermediate Spending Limit Report Request
    procedure described in the document?
  sentences:
  - The Resource URI variables defined in table 6.1.3.8.2-1 for the 'sm-data' resource
    serve to dynamically construct the URI based on specific parameters. These variables
    include {apiRoot}, <apiVersion>, and {supi}. The {apiRoot} variable specifies
    the base URL of the API, <apiVersion> indicates the version of the API to be used,
    and {supi} represents the Subscription Permanent Identifier, which is used to
    uniquely identify the subscriber. These variables ensure that the URI is correctly
    formatted and points to the appropriate resource for the given subscriber and
    API version.
  - The purpose of the Intermediate Spending Limit Report Request procedure is to
    allow the PCF (Policy Control Function) to request the status of additional policy
    counters available at the CHF (Charging Function) or to remove the request for
    the status of policy counters. The PCF can modify the list of subscribed policy
    counters based on its policy decisions, and the CHF responds by providing the
    policy counter status, optionally including pending statuses and their activation
    times, for the requested policy counters.
  - When ABC online charging is employed, the TDF uses Debit / Reserve Units Request[Initial],
    update, or termination to convey charging information related to the detected
    application traffic. The OCS responds with Debit / Reserve Units Response, which
    includes quotas for rating groups or instructions on handling the application
    traffic (e.g., terminate, continue, reroute). The TDF must request a quota before
    service delivery. If only certain quotas are authorized by the OCS (e.g., due
    to insufficient credit), the rating groups without authorized quotas are handled
    according to the received Result Code value. The quota supervision mechanism is
    further described in TS 32.299 [50].
- source_sentence: What types of data structures are supported by the GET request
    body on the resource described in table 5.2.11.3.4-2, and how do they influence
    the request?
  sentences:
  - In Direct Communication mode, the NF Service consumer can subscribe to status
    change notifications of NF instances from the NRF. If the NF Service consumer
    is notified by the NRF or detects by itself (e.g., through a lack of response
    to a request) that the NF producer instance is no longer available, it selects
    another available NF producer instance within the same NF Set. In Indirect Communication
    mode, the SCP or NF Service consumer may also subscribe to status change notifications
    from the NRF and select another NF producer instance within the same NF Set if
    the original instance serving the UE becomes unavailable. The specific implementation
    details of how the SCP detects the unavailability of an NF producer instance are
    left to the implementation.
  - The data structures supported by the GET request body on the resource are detailed
    in table 5.2.11.3.4-2. These structures define the format and content of the data
    that can be sent in the request body. They might include fields such as 'filterCriteria',
    'sortOrder', or 'pagination', which influence how the server processes the request
    and returns the appropriate data.
  - 'The specific triggers on the Ro interface that can lead to the termination of
    the IMS service include: 1) Reception of an unsuccessful Operation Result different
    from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response
    message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE
    within the multiple units operation in the Debit/Reserve Units Response message
    when only one instance of the multiple units operation field is used. 3) Execution
    of the termination action procedure as defined in TS 32.299 when only one instance
    of the Multiple Unit Operation field is used. 4) Execution of the failure handling
    procedures when the Failure Action is set to ''Terminate'' or ''Retry & Terminate''.
    5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE_base_3gpp-qa-v2_Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8347103013864849
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9628129405256866
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9806391748898128
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9927196159954319
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8347103013864849
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32093764684189546
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1961278349779626
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09927196159954321
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8347103013864849
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9628129405256866
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9806391748898128
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9927196159954319
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9235193716202091
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9002603606826465
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9006611894428589
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8341214467978801
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9630270694669973
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.980835459752681
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9925947074463339
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8341214467978801
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32100902315566576
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19616709195053625
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09925947074463341
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8341214467978801
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9630270694669973
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.980835459752681
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9925947074463339
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9232781516394674
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8999735171216805
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9003855301087177
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8326047001302618
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9624382148783927
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9801930729287486
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9922913581128102
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8326047001302618
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3208127382927975
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19603861458574973
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09922913581128105
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8326047001302618
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9624382148783927
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9801930729287486
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9922913581128102
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9223721780180253
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.898869719250338
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8993021227310489
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8294462982459271
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9610642208383148
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9796399064970289
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.991720347602648
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8294462982459271
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3203547402794382
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19592798129940583
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09917203476026483
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8294462982459271
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9610642208383148
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9796399064970289
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.991720347602648
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9204835891487085
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8965493659262566
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.897020544909686
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.8210595813779198
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9574775610713585
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9771595795935119
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9906497028960939
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8210595813779198
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3191591870237861
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19543191591870243
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09906497028960942
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8210595813779198
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9574775610713585
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9771595795935119
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9906497028960939
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9158816707476002
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8908051588080549
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8913320555914594
      name: Cosine Map@100
---

# BGE_base_3gpp-qa-v2_Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("iris49/3gpp-embedding-model-v0")
# Run inference
sentences = [
    'What types of data structures are supported by the GET request body on the resource described in table 5.2.11.3.4-2, and how do they influence the request?',
    "The data structures supported by the GET request body on the resource are detailed in table 5.2.11.3.4-2. These structures define the format and content of the data that can be sent in the request body. They might include fields such as 'filterCriteria', 'sortOrder', or 'pagination', which influence how the server processes the request and returns the appropriate data.",
    "The specific triggers on the Ro interface that can lead to the termination of the IMS service include: 1) Reception of an unsuccessful Operation Result different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE within the multiple units operation in the Debit/Reserve Units Response message when only one instance of the multiple units operation field is used. 3) Execution of the termination action procedure as defined in TS 32.299 when only one instance of the Multiple Unit Operation field is used. 4) Execution of the failure handling procedures when the Failure Action is set to 'Terminate' or 'Retry & Terminate'. 5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.8347     | 0.8341     | 0.8326     | 0.8294     | 0.8211     |
| cosine_accuracy@3   | 0.9628     | 0.963      | 0.9624     | 0.9611     | 0.9575     |
| cosine_accuracy@5   | 0.9806     | 0.9808     | 0.9802     | 0.9796     | 0.9772     |
| cosine_accuracy@10  | 0.9927     | 0.9926     | 0.9923     | 0.9917     | 0.9906     |
| cosine_precision@1  | 0.8347     | 0.8341     | 0.8326     | 0.8294     | 0.8211     |
| cosine_precision@3  | 0.3209     | 0.321      | 0.3208     | 0.3204     | 0.3192     |
| cosine_precision@5  | 0.1961     | 0.1962     | 0.196      | 0.1959     | 0.1954     |
| cosine_precision@10 | 0.0993     | 0.0993     | 0.0992     | 0.0992     | 0.0991     |
| cosine_recall@1     | 0.8347     | 0.8341     | 0.8326     | 0.8294     | 0.8211     |
| cosine_recall@3     | 0.9628     | 0.963      | 0.9624     | 0.9611     | 0.9575     |
| cosine_recall@5     | 0.9806     | 0.9808     | 0.9802     | 0.9796     | 0.9772     |
| cosine_recall@10    | 0.9927     | 0.9926     | 0.9923     | 0.9917     | 0.9906     |
| **cosine_ndcg@10**  | **0.9235** | **0.9233** | **0.9224** | **0.9205** | **0.9159** |
| cosine_mrr@10       | 0.9003     | 0.9        | 0.8989     | 0.8965     | 0.8908     |
| cosine_map@100      | 0.9007     | 0.9004     | 0.8993     | 0.897      | 0.8913     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 56,041 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 15 tokens</li><li>mean: 30.56 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 42 tokens</li><li>mean: 109.65 tokens</li><li>max: 298 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                    | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What does the 'dataStatProps' attribute represent in the 'AnalyticsMetadataInfo' type, and what is its data type?</code>            | <code>The 'dataStatProps' attribute in the 'AnalyticsMetadataInfo' type represents a list of dataset statistical properties of the data used to generate the analytics. It is defined as an optional attribute with a data type of 'array(DatasetStatisticalProperty)' and a cardinality of 1..N, meaning it can contain one or more elements.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>Why is it important to have standardized methods for resource management in the Nudm_SubscriberDataManagement Service API?</code>   | <code>Standardized methods for resource management in the Nudm_SubscriberDataManagement Service API are important because they ensure uniformity, predictability, and compatibility across different implementations and systems. This standardization facilitates seamless integration, reduces errors, and enhances the efficiency of managing subscriber data, which is critical for maintaining reliable communication services.</code>                                                                                                                                                                                                                                                                                                                                            |
  | <code>What is the purpose of the Nsmf_PDUSession_SMContextStatusNotify service operation in the context of I-SMF context transfer?</code> | <code>The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF (Session Management Function) to notify its consumers about the status of an SM (Session Management) context related to a PDU (Packet Data Unit) Session. In the context of I-SMF (Intermediate SMF) context transfer, this service operation is used to indicate the transfer of the SM context to a new I-SMF or SMF set. It also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio Access Network) parameters tuning in the AMF (Access and Mobility Management Function). Additionally, it can report DDN (Downlink Data Notification) failures and provide target DNAI (Data Network Access Identifier) information for the current or next PDU session.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.0913     | 10      | 1.4273        | -                      | -                      | -                      | -                      | -                     |
| 0.1826     | 20      | 0.5399        | -                      | -                      | -                      | -                      | -                     |
| 0.2740     | 30      | 0.1252        | -                      | -                      | -                      | -                      | -                     |
| 0.3653     | 40      | 0.0625        | -                      | -                      | -                      | -                      | -                     |
| 0.4566     | 50      | 0.0507        | -                      | -                      | -                      | -                      | -                     |
| 0.5479     | 60      | 0.0366        | -                      | -                      | -                      | -                      | -                     |
| 0.6393     | 70      | 0.029         | -                      | -                      | -                      | -                      | -                     |
| 0.7306     | 80      | 0.0239        | -                      | -                      | -                      | -                      | -                     |
| 0.8219     | 90      | 0.0252        | -                      | -                      | -                      | -                      | -                     |
| 0.9132     | 100     | 0.0237        | -                      | -                      | -                      | -                      | -                     |
| 0.9954     | 109     | -             | 0.9199                 | 0.9195                 | 0.9180                 | 0.9150                 | 0.9081                |
| 1.0046     | 110     | 0.026         | -                      | -                      | -                      | -                      | -                     |
| 1.0959     | 120     | 0.017         | -                      | -                      | -                      | -                      | -                     |
| 1.1872     | 130     | 0.02          | -                      | -                      | -                      | -                      | -                     |
| 1.2785     | 140     | 0.0125        | -                      | -                      | -                      | -                      | -                     |
| 1.3699     | 150     | 0.0134        | -                      | -                      | -                      | -                      | -                     |
| 1.4612     | 160     | 0.0128        | -                      | -                      | -                      | -                      | -                     |
| 1.5525     | 170     | 0.0123        | -                      | -                      | -                      | -                      | -                     |
| 1.6438     | 180     | 0.0097        | -                      | -                      | -                      | -                      | -                     |
| 1.7352     | 190     | 0.0101        | -                      | -                      | -                      | -                      | -                     |
| 1.8265     | 200     | 0.0124        | -                      | -                      | -                      | -                      | -                     |
| 1.9178     | 210     | 0.0116        | -                      | -                      | -                      | -                      | -                     |
| 2.0        | 219     | -             | 0.9220                 | 0.9216                 | 0.9206                 | 0.9184                 | 0.9130                |
| 2.0091     | 220     | 0.012         | -                      | -                      | -                      | -                      | -                     |
| 2.1005     | 230     | 0.0111        | -                      | -                      | -                      | -                      | -                     |
| 2.1918     | 240     | 0.0101        | -                      | -                      | -                      | -                      | -                     |
| 2.2831     | 250     | 0.0101        | -                      | -                      | -                      | -                      | -                     |
| 2.3744     | 260     | 0.009         | -                      | -                      | -                      | -                      | -                     |
| 2.4658     | 270     | 0.0103        | -                      | -                      | -                      | -                      | -                     |
| 2.5571     | 280     | 0.009         | -                      | -                      | -                      | -                      | -                     |
| 2.6484     | 290     | 0.0083        | -                      | -                      | -                      | -                      | -                     |
| 2.7397     | 300     | 0.0076        | -                      | -                      | -                      | -                      | -                     |
| 2.8311     | 310     | 0.0093        | -                      | -                      | -                      | -                      | -                     |
| 2.9224     | 320     | 0.0104        | -                      | -                      | -                      | -                      | -                     |
| 2.9954     | 328     | -             | 0.9234                 | 0.9230                 | 0.9221                 | 0.9201                 | 0.9156                |
| 3.0137     | 330     | 0.0104        | -                      | -                      | -                      | -                      | -                     |
| 3.1050     | 340     | 0.0089        | -                      | -                      | -                      | -                      | -                     |
| 3.1963     | 350     | 0.0084        | -                      | -                      | -                      | -                      | -                     |
| 3.2877     | 360     | 0.0082        | -                      | -                      | -                      | -                      | -                     |
| 3.3790     | 370     | 0.0089        | -                      | -                      | -                      | -                      | -                     |
| 3.4703     | 380     | 0.0083        | -                      | -                      | -                      | -                      | -                     |
| 3.5616     | 390     | 0.0061        | -                      | -                      | -                      | -                      | -                     |
| 3.6530     | 400     | 0.0065        | -                      | -                      | -                      | -                      | -                     |
| 3.7443     | 410     | 0.0063        | -                      | -                      | -                      | -                      | -                     |
| 3.8356     | 420     | 0.0084        | -                      | -                      | -                      | -                      | -                     |
| 3.9269     | 430     | 0.0083        | -                      | -                      | -                      | -                      | -                     |
| **3.9817** | **436** | **-**         | **0.9235**             | **0.9233**             | **0.9224**             | **0.9205**             | **0.9159**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->