distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: {'accuracy': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4805 1.0 500 0.2170 {'accuracy': 0.921}
0.3815 2.0 1000 0.1949 {'accuracy': 0.948}
0.2958 3.0 1500 0.1315 {'accuracy': 0.965}
0.2432 4.0 2000 0.0774 {'accuracy': 0.981}
0.1623 5.0 2500 0.0234 {'accuracy': 0.99}
0.1051 6.0 3000 0.0123 {'accuracy': 0.998}
0.0886 7.0 3500 0.0011 {'accuracy': 0.999}
0.043 8.0 4000 0.0002 {'accuracy': 1.0}
0.0285 9.0 4500 0.0000 {'accuracy': 1.0}
0.0076 10.0 5000 0.0000 {'accuracy': 1.0}

Framework versions

  • PEFT 0.13.1
  • Transformers 4.45.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for isal-amir/distilbert-base-uncased-lora-text-classification

Adapter
(260)
this model