File size: 22,054 Bytes
f5210ab
 
 
 
 
 
 
10d457b
b3e9026
e99a88a
92627a4
 
 
e9183d7
0881b9c
f5210ab
 
 
 
 
 
 
0881b9c
92627a4
f5210ab
 
92627a4
 
 
f5210ab
e99a88a
f5210ab
25785e2
1a3587f
25785e2
f5210ab
 
 
 
 
 
 
 
 
0881b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16788b9
 
 
 
5d0466b
 
 
 
f5210ab
 
 
 
e99a88a
bf7f6a8
 
25785e2
0881b9c
e99a88a
 
0881b9c
 
 
 
e99a88a
 
f5210ab
 
 
e99a88a
92627a4
e99a88a
 
 
f5210ab
 
25785e2
e99a88a
25785e2
 
f5210ab
 
 
92627a4
 
 
b1b9f82
92627a4
 
517c7bb
 
 
92627a4
0881b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
f5210ab
0881b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
f5210ab
 
0881b9c
f5210ab
0881b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5210ab
92627a4
 
0881b9c
 
 
 
c1f292a
0881b9c
 
 
 
 
 
e2727ee
 
 
16788b9
 
 
 
0881b9c
1a3587f
 
0881b9c
f5210ab
0881b9c
 
92627a4
0881b9c
 
f5210ab
0881b9c
 
 
 
 
 
 
f5210ab
b3e9026
 
 
 
0881b9c
b3e9026
dbe7437
 
 
137bb5e
0881b9c
 
16788b9
0881b9c
 
5d0466b
0881b9c
b3e9026
 
0881b9c
 
f5210ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0881b9c
f5210ab
 
0881b9c
f5210ab
 
 
0881b9c
f5210ab
 
0881b9c
b3e9026
0881b9c
b3e9026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5210ab
0881b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1b9f82
92627a4
 
 
b1b9f82
92627a4
 
b1b9f82
92627a4
 
b1b9f82
92627a4
b3e9026
b1b9f82
b3e9026
92627a4
 
 
 
 
 
 
 
 
 
0881b9c
92627a4
 
 
 
0881b9c
92627a4
 
e9183d7
 
b1b9f82
 
 
 
 
e9183d7
92627a4
 
 
 
0881b9c
92627a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c057be
92627a4
 
 
 
 
 
 
0881b9c
 
 
 
 
 
92627a4
 
0881b9c
92627a4
 
 
 
 
 
0881b9c
92627a4
 
0881b9c
 
92627a4
0881b9c
 
 
f5210ab
0881b9c
 
 
 
f5210ab
0881b9c
f5210ab
0881b9c
 
f5210ab
0881b9c
f5210ab
 
 
 
92627a4
 
f5210ab
 
 
 
92627a4
 
 
 
f5210ab
 
b3e9026
f5210ab
 
 
 
0881b9c
 
 
f5210ab
 
 
 
0881b9c
f5210ab
 
 
 
 
 
 
 
92627a4
0881b9c
92627a4
b3e9026
0881b9c
 
f5210ab
92627a4
 
0881b9c
 
 
 
 
 
92627a4
f5210ab
2c58008
 
92627a4
 
f5210ab
 
 
517c7bb
2c58008
 
 
 
 
 
0881b9c
2c58008
 
 
 
 
 
b3e9026
 
 
 
 
2c58008
 
 
0881b9c
 
 
 
 
2c58008
 
 
 
 
 
 
 
b1b9f82
2c58008
 
 
b1b9f82
2c58008
0881b9c
 
 
 
 
 
 
 
2c58008
 
 
137bb5e
2c58008
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List
import os
import re
from pathlib import Path
from typing import Union
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from PIL import ImageFilter
from transformers import CLIPImageProcessor, CLIPTokenizer, CLIPModel

import torch
from diffusers import (
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    EulerAncestralDiscreteScheduler,
    StableDiffusionPipeline,
    utils,
)
from safetensors.torch import load_file
from torch import autocast, tensor
import torchvision.transforms
from PIL import Image

REPO_DIR = Path(__file__).resolve().parent

# if local avoid repo url
# print(os.getcwd())

# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if device.type != "cuda":
    raise ValueError("need to run on GPU")


class EndpointHandler:
    LORA_PATHS = {
        "hairdetailer": [str(REPO_DIR / "lora/hairdetailer.safetensors"), ""],
        "lora_leica": [str(REPO_DIR / "lora/lora_leica.safetensors"), "leica_style"],
        "epiNoiseoffset_v2": [str(REPO_DIR / "lora/epiNoiseoffset_v2.safetensors"), ""],
        "MBHU-TT2FRS": [
            str(REPO_DIR / "lora/MBHU-TT2FRS.safetensors"),
            "flat breast, small breast, big breast, fake breast",
        ],
        "polyhedron_new_skin_v1.1": [
            str(REPO_DIR / "lora/polyhedron_new_skin_v1.1.safetensors"),
            "skin blemish,  detailed skin ",
        ],
        "ShinyOiledSkin_v20": [
            str(REPO_DIR / "lora/ShinyOiledSkin_v20-LoRA.safetensors"),
            "shiny skin",
        ],
        "detailed_eye-10": [str(REPO_DIR / "lora/detailed_eye-10.safetensors"), ""],
        "add_detail": [str(REPO_DIR / "lora/add_detail.safetensors"), ""],
        "MuscleGirl_v1": [str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"), "abs"],
        "nurse_v11-05": [str(REPO_DIR / "lora/nurse_v11-05.safetensors"), "nurse"],
        "shibari_v20": [str(REPO_DIR / "lora/shibari_v20.safetensors"), "shibari,rope"],
        "tajnaclub_high_heelsv1.2": [
            str(REPO_DIR / "lora/tajnaclub_high_heelsv1.2.safetensors"),
            "high heels",
        ],
        "CyberPunkAI": [
            str(REPO_DIR / "lora/CyberPunkAI.safetensors"),
            "neon CyberpunkAI",
        ],
        "FutaCockCloseUp-v1": [
            str(REPO_DIR / "lora/FutaCockCloseUp-v1.safetensors"),
            "huge penis",
        ],
        "PovBlowjob-v3": [
            str(REPO_DIR / "lora/PovBlowjob-v3.safetensors"),
            "blowjob, deepthroat, kneeling, runny makeup, creampie",
        ],
        "dp_from_behind_v0.1b": [
            str(REPO_DIR / "lora/dp_from_behind_v0.1b.safetensors"),
            "1girl, 2boys, double penetration, multiple penises",
        ],
        "EkuneSideDoggy": [
            str(REPO_DIR / "lora/EkuneSideDoggy.safetensors"),
            "sidedoggystyle, doggystyle",
        ],
        "qqq-grabbing_from_behind-v2-000006": [
            str(REPO_DIR / "lora/qqq-grabbing_from_behind-v2-000006.safetensors"),
            "grabbing from behind, breast grab",
        ],
        "ftm-v0": [
            str(REPO_DIR / "lora/ftm-v0.safetensors"),
            "big mouth, tongue, long tongue",
        ],
        "tgirls_V3_5": [
            str(REPO_DIR / "lora/tgirls_V3_5.safetensors"),
            "large penis, penis, erect penis",
        ],
        "fapp9": [
            str(REPO_DIR / "lora/fapp9.safetensors"),
            "large penis, penis, erect penis",
        ],
        "pov-doggy-graphos": [
            str(REPO_DIR / "lora/pov-doggy-graphos.safetensors"),
            "penis in vagina, white man grabbing her ass",
        ],
        "reelmech1v2": [
            str(REPO_DIR / "lora/reelmech1v2.safetensors"),
            "reelmech",
        ],
    }

    TEXTUAL_INVERSION = [
        {
            "weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
            "token": "easynegative",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/kkw-NativeAmerican.pt"),
            "token": "badhandv4",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"),
            "token": "kkw-Afro, kkw-Asian, kkw-Euro ",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/bad-artist-anime.pt"),
            "token": "bad-artist-anime",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"),
            "token": "negfeetv2",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
            "token": "ng_deepnegative_v1_75t",
        },
        {
            "weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"),
            "token": "bad-hands-5",
        },
    ]

    def __init__(self, path="."):
        self.inference_progress = {}  # Dictionary to store progress of each request
        self.inference_images = {}  # Dictionary to store latest image of each request
        self.total_steps = {}
        self.active_request_ids = list()
        self.inference_in_progress = False

        self.executor = ThreadPoolExecutor(
            max_workers=1
        )  # Vous pouvez ajuster max_workers en fonction de vos besoins

        realistic_path = str(REPO_DIR / "realistic/")
        self.pipe_realistic, self.safety_checker = self.load_realistic(realistic_path)

        anime_path = str(REPO_DIR / "anime/")
        self.pipe_anime, self.pipe_anime_safety_checker = self.load_anime(anime_path)

        # Load CLipImagePRocessor for NSFW check later
        self.image_processor = CLIPImageProcessor.from_pretrained(
            "openai/clip-vit-base-patch16"
        )

    def load_model_essentials(self, model_path):
        """common to all models"""

        # load the optimized model

        if "realistic" in model_path:
            pipe = DiffusionPipeline.from_pretrained(
                pretrained_model_name_or_path=model_path,
                custom_pipeline="lpw_stable_diffusion",  # avoid 77 token limit
                torch_dtype=torch.float16,  # accelerate render
            )

            safety_checker = pipe.safety_checker.to(device).to(torch.float16)
        else:
            safety_checker = None

        pipe = DiffusionPipeline.from_pretrained(
            pretrained_model_name_or_path=model_path,
            custom_pipeline="lpw_stable_diffusion",  # avoid 77 token limit
            torch_dtype=torch.float16,  # accelerate render
            safety_checker=None,  # Mode boulardus
        )

        pipe = pipe.to(device)

        # Disable progress bar
        pipe.set_progress_bar_config(disable=True)

        # Load negative embeddings to avoid bad hands, etc
        self.load_embeddings(pipe)

        # boosts performance by another 20%
        pipe.enable_xformers_memory_efficient_attention()
        pipe.enable_attention_slicing()  # may need a requirement in the root with xformer

        return pipe, safety_checker

    def load_anime(self, path):
        """Load anime model"""

        # Init pipe
        pipe, safety_checker = self.load_model_essentials(path)

        # https://stablediffusionapi.com/docs/a1111schedulers/

        # Euler a
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipe.scheduler.config,
        )

        # Load loras one time only
        # Must be replaced once we will know how to hot load/unload
        # it use the own made load_lora function
        self.load_selected_loras(
            pipe,
            [
                # ["detailed_eye-10", 0.2],
                # ["add_detail", 0.2],
                ["MuscleGirl_v1", 0.05],
                # ["dp_from_behind_v0.1b", 0.05],
                # ["shibari_v20", 0.03],
                # ["ftm-v0", 0.03],
                # ["PovBlowjob-v3", 0.03],
            ],
        )

        return pipe, safety_checker

    def load_realistic(self, path):
        """Load realistic model"""

        # Init pipe
        pipe, safety_checker = self.load_model_essentials(path)

        # https://stablediffusionapi.com/docs/a1111schedulers/

        # DPM++ 2M Karras
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            pipe.scheduler.config,
            use_karras_sigmas=True,
        )

        # Load loras one time only
        # Must be replaced once we will know how to hot load/unload
        # it use the own made load_lora function
        self.load_selected_loras(
            pipe,
            [
                ["polyhedron_new_skin_v1.1", 0.15],
                ["detailed_eye-10", 0.1],
                ["add_detail", 0.1],
                ["MuscleGirl_v1", 0.1],
                ["tgirls_V3_5", 0.02],
                ["PovBlowjob-v3", 0.02],
                ["pov-doggy-graphos", 0.02],
                ["shibari_v20", 0.02],
                ["ftm-v0", 0.02],
                ["reelmech1v2", 0.02],
            ],
        )

        return pipe, safety_checker

    def load_lora(self, pipeline, lora_path, lora_weight=0.5):
        state_dict = load_file(lora_path)
        LORA_PREFIX_UNET = "lora_unet"
        LORA_PREFIX_TEXT_ENCODER = "lora_te"

        alpha = lora_weight
        visited = []

        for key in state_dict:
            state_dict[key] = state_dict[key].to(device)

        # directly update weight in diffusers model
        for key in state_dict:
            # as we have set the alpha beforehand, so just skip
            if ".alpha" in key or key in visited:
                continue

            if "text" in key:
                layer_infos = (
                    key.split(".")[0]
                    .split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
                    .split("_")
                )
                curr_layer = pipeline.text_encoder
            else:
                layer_infos = (
                    key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
                )
                curr_layer = pipeline.unet

            # find the target layer
            temp_name = layer_infos.pop(0)
            while len(layer_infos) > -1:
                try:
                    curr_layer = curr_layer.__getattr__(temp_name)
                    if len(layer_infos) > 0:
                        temp_name = layer_infos.pop(0)
                    elif len(layer_infos) == 0:
                        break
                except Exception:
                    if len(temp_name) > 0:
                        temp_name += "_" + layer_infos.pop(0)
                    else:
                        temp_name = layer_infos.pop(0)

            # org_forward(x) + lora_up(lora_down(x)) * multiplier
            pair_keys = []
            if "lora_down" in key:
                pair_keys.append(key.replace("lora_down", "lora_up"))
                pair_keys.append(key)
            else:
                pair_keys.append(key)
                pair_keys.append(key.replace("lora_up", "lora_down"))

            # update weight
            if len(state_dict[pair_keys[0]].shape) == 4:
                weight_up = (
                    state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
                )
                weight_down = (
                    state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
                )
                curr_layer.weight.data += alpha * torch.mm(
                    weight_up, weight_down
                ).unsqueeze(2).unsqueeze(3)
            else:
                weight_up = state_dict[pair_keys[0]].to(torch.float32)
                weight_down = state_dict[pair_keys[1]].to(torch.float32)
                curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)

            # update visited list
            for item in pair_keys:
                visited.append(item)

        return pipeline

    def load_embeddings(self, pipeline):
        """Load textual inversions, avoid bad prompts"""
        for model in EndpointHandler.TEXTUAL_INVERSION:
            pipeline.load_textual_inversion(
                ".", weight_name=model["weight_name"], token=model["token"]
            )

    def load_selected_loras(self, pipeline, selections):
        """Load Loras models, can lead to marvelous creations"""
        for model_name, weight in selections:
            lora_path = EndpointHandler.LORA_PATHS[model_name][0]
            # self.pipe.load_lora_weights(lora_path)
            self.load_lora(pipeline, lora_path, weight)

    def clean_negative_prompt(self, negative_prompt):
        """Clean negative prompt to remove already used negative prompt handlers"""

        # negative_prompt = (
        #     negative_prompt
        #     + """, easynegative, badhandv4, bad-artist-anime, negfeetv2, ng_deepnegative_v1_75t, bad-hands-5, """
        # )

        tokens = [item["token"] for item in self.TEXTUAL_INVERSION]

        # Retirer tous les tokens de negative_prompt s'ils existent déjà
        for token in tokens:
            # Utiliser une expression régulière pour un remplacement insensible à la casse
            negative_prompt = re.sub(
                r"\b" + re.escape(token) + r"\b",
                "",
                negative_prompt,
                flags=re.IGNORECASE,
            ).strip()

        # Ajouter tous les tokens à la fin de negative_prompt
        negative_prompt += " " + " ".join(tokens)

        return negative_prompt

    def check_fields(self, data):
        """check for fields, if some missing return error"""

        # 1. Verify input arguments
        required_fields = [
            "prompt",
            "negative_prompt",
            "width",
            "num_inference_steps",
            "height",
            "guidance_scale",
            "request_id",
        ]

        missing_fields = [field for field in required_fields if field not in data]

        if missing_fields:
            return {
                "flag": "error",
                "message": f"Missing fields: {', '.join(missing_fields)}",
            }

        return False

    def clean_request_data(self):
        """Clean up the data related to a specific request ID."""

        # Remove the request ID from the progress dictionary
        self.inference_progress.clear()

        # Remove the request ID from the images dictionary
        self.inference_images.clear()

        # Remove the request ID from the total_steps dictionary
        self.total_steps.clear()

        # Delete request id
        self.active_request_ids.clear()

        # Set inference to False
        self.inference_in_progress = False

    def progress_callback(
        self,
        step: int,
        timestep: int,
        latents: Any,
        request_id: str,
        status: str,
        pipeline: Any,
    ):
        try:
            if status == "progress":
                # Latents to numpy
                img_data = pipeline.decode_latents(latents)
                img_data = (img_data.squeeze() * 255).astype(np.uint8)
                img = Image.fromarray(img_data, "RGB")

                # Apply a blur to the image
                # more intense at the beginning
                if step < int(self.total_steps[self.active_request_ids[0]] / 1.5):
                    img = img.filter(ImageFilter.GaussianBlur(radius=30))
                else:
                    img = img.filter(ImageFilter.GaussianBlur(radius=10))

                # print(img_data)
            else:
                # pil object
                # print(latents)

                img = latents

            buffered = BytesIO()
            img.save(buffered, format="PNG")

            # print(status)
            # Save the image to a file
            # img.save("squirel.png", format="PNG")

            # Encode the image into a base64 string representation
            img_str = base64.b64encode(buffered.getvalue()).decode()

        except Exception as e:
            print(f"Error: {e}")

        # Store progress and image
        progress_percentage = (
            step / self.total_steps[request_id]
        ) * 100  # Assuming self.total_steps is the total number of steps for inference

        self.inference_progress[request_id] = progress_percentage
        self.inference_images[request_id] = img_str

    def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]:
        progress = self.inference_progress.get(request_id, 0)
        latest_image = self.inference_images.get(request_id, None)

        # print(self.inference_progress)

        if progress >= 100:
            status = "complete"

            # Check if Image is NSFW
            image_data = base64.b64decode(latest_image)
            image_io = BytesIO(image_data)
            is_nsfw = self.check_nsfw(Image.open(image_io))[0]
            # is_nsfw = "bypass"
        else:
            status = "in-progress"
            is_nsfw = ""

        return {
            "flag": "success",
            "status": status,
            "progress": int(progress),
            "image": latest_image,
            "is_nsfw": is_nsfw,
        }

    def check_nsfw(self, image):
        """Check if image is NSFW"""

        safety_checker_input = self.image_processor(image, return_tensors="pt").to(
            device
        )

        image, has_nsfw_concept = self.safety_checker(
            images=np.array(image),
            clip_input=safety_checker_input.pixel_values.to(torch.float16),
        )

        return has_nsfw_concept

    def start_inference(self, pipeline, data: Dict) -> Dict:
        """Start a new inference."""

        global device

        # Now extract the fields
        prompt = data["prompt"]
        negative_prompt = data["negative_prompt"]
        loras_model = data.get("loras_model", None)
        seed = data.get("seed", None)
        width = data["width"]
        num_inference_steps = data["num_inference_steps"]
        height = data["height"]
        guidance_scale = data["guidance_scale"]
        request_id = data["request_id"]

        # Used for progress checker
        self.total_steps[request_id] = num_inference_steps

        # USe this to add automatically some negative prompts
        forced_negative = self.clean_negative_prompt(negative_prompt)

        # Set the generator seed if provided
        generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None

        # set scale of loras (mix all loras and apply common scale, can't be indivual)
        # scale = 0.25 # seems ok
        # scale = 0.2

        try:
            # 2. Process
            with autocast(device.type):
                image = pipeline.text2img(
                    prompt=prompt,
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    height=height,
                    width=width,
                    negative_prompt=forced_negative,
                    generator=generator,
                    max_embeddings_multiples=5,
                    callback=lambda step, timestep, latents: self.progress_callback(
                        step, timestep, latents, request_id, "progress", pipeline
                    ),
                    callback_steps=5,
                    # cross_attention_kwargs={"scale": 0.02},
                )

            # print(image)
            self.progress_callback(
                num_inference_steps,
                0,
                image.images[0],
                request_id,
                "complete",
                pipeline,
            )

            self.inference_in_progress = False

            # for debug
            # image.save("squirelb.png", format="PNG")

        except Exception as e:
            # Handle any other exceptions and return an error response
            return {"flag": "error", "message": str(e)}

    def __call__(self, data: Any) -> Dict:
        """Handle incoming requests."""

        action = data.get("action", None)
        request_id = data.get("request_id")
        genre = data.get("genre")

        # Check if the request_id is valid for all actions
        if not request_id:
            return {"flag": "error", "message": "Missing request_id."}

        if action == "check_progress":
            if request_id not in self.active_request_ids:
                return {
                    "flag": "error",
                    "message": "Request id doesn't match any active request.",
                }
            return self.check_progress(request_id)

        elif action == "inference":
            # Check field before doing anything
            check_fields = self.check_fields(data)
            if check_fields:
                return check_fields

            # Check if an inference is already in progress
            if self.inference_in_progress:
                return {
                    "flag": "error",
                    "message": "Another inference is already in progress. Please wait.",
                }

            # Set the inference state to in progress
            self.clean_request_data()
            self.inference_in_progress = True
            self.inference_progress[request_id] = 0
            self.inference_images[request_id] = None
            self.active_request_ids.append(request_id)

            # Load model according to genre
            if genre == "anime":
                pipe = self.pipe_anime
            else:
                pipe = self.pipe_realistic

            self.executor.submit(self.start_inference, pipe, data)
            # self.start_inference(data)

            return {
                "flag": "success",
                "status": "started",
                "message": "Inference started",
                "request_id": request_id,
            }

        else:
            return {"flag": "error", "message": f"Unsupported action: {action}"}